EVALUACION DE LAS DIMENSIONES Y ESPESOR DE LA PLANCHA DE NEOPRENO

Viga Exterior

20.9 m Longitud del puente puente tipo: a Losa Conc. Postensi

Reacción por efecto de cargas muertas (R_D) = 325.97 kN

Reacción por efecto de sobrecarga (R_L) = 296.68 kN (no incluye impacto)

 $W_{D1} = 20.77 \text{ kN/m}$ cargas por peso propio

 $W_{D2} = 7.11 \text{ kN/m}$ $mg_{M} = 0.708$ cargas por peso muerto

Ic = 14606938.93 Momento de inercia de la sección compuesta cm⁴ Is = 6834483.78 Momento de inercia de la sección no compuesta E = 33915 MPa Módulo de elasticidad Coeficiente de retracción + fluencia $\epsilon = 0.0006986$

Dureza	Módulo de corte del elastómero (Mpa)						
Neopreno	G min	G prom	G máx	k			
60	0.9	1.14	1.38	0.6			

creep 35%

Variación de Temperatura = 20 °C $\alpha = 1.08E-05 1/^{\circ}C$

Esfuerzo de fluencia de la plancha de refuerzo fy = 36 Ksi

ángulo de rotación por cargas permanentes = **0.003632** ángulo de rotación por sobrecarga = 0.002317

desplazamiento horizontal por sismo = 4.50 cm

número interior de láminas elementales del elastómero = 1.20 cm espesor nominal de una lámina nominal del elastómero =

> espesor de un zuncho intermedio (placa) = 0.30 cm

> > Reacción total (R_T) = 622.65 kN Longitud del Puente = 20.9 m

Area de neopreno

Area requerida del Neopreno

Tomando en cuenta que $\sigma ct < 11 \text{ MPa}$ 1.1 kN/cm^2

AASHTO (14.7.5.3.2-1), luego se tiene:

Q = 24780 N

L = 20900 mm

 $W_{D2} = 7.11 \text{ N/mm}$

Is = 68344837800 I = 1.46069E+11

viga I

sección compuesta 3n

P = 102660 N spaciamiento de cargas = 4300 mm

 $\theta = \frac{W_{\rm DL}L^3}{24EL} + \frac{W_{\rm D2}L^3}{24EI} \quad \begin{array}{c} \text{II} = 1.46069\text{E+}11 \\ \text{E} = 33915 \, \text{MPa} \\ W_{\rm D1} = 20.77 \, \text{N/mm} \end{array}$

$$A = \frac{R_T}{\sigma_{ct}} = \frac{622.65 \text{ kN}}{1.1} = 566.1 \text{ cm}^3$$

USAR

W = 40.0 cmL = 24.0 cm

 $A = 960.00 \text{ cm}^2$

Esfuerzo de compresión promedio causado por la carga muerta y viva sin incluir el impacto

$$\sigma_s = \frac{R_T}{A}$$
 = $\frac{622650}{96000}$ = 6.49 MPa

$$\sigma_L = \frac{R_L}{A} = \frac{296680}{96000} = 3.09 \,\text{MPa}$$

condición de diseño:

$$\sigma_{s} \leq 1.66G.S \leq 11.0MPa$$

$$\sigma_L \leq 0.66G.S$$

(se usa el valor mínimo de G)

Espesor de una capa de neopreno

$$h_{ri} \le \frac{L.W}{2S(L+W)} = \frac{24.0 \times 40.0}{2 \times 5.20 \times (24.0 + 40.0)} = 1.44 \text{ cm}$$

Factor de forma

(hacemos la corrección del factor de forma)

$$S = \frac{L.W}{2hri(L+W)} = \frac{24.0 \times 40.0}{}$$

Determinación de Esfuerzos

Esfuerzo de compresión por efecto de cargas permanentes y sobrecarga

$$\sigma_s \leq 1.66G.S \leq 11.0MPa$$
 6.49 MPa \leq 1.66 x 0.9 x 6.25 = 9.34 MPa

$$6.49 \text{ MPa} \leq 9.34 \text{ MPa}$$
 ok!

Esfuerzo a compresión por efecto de sobrecarga

$$\sigma_L \le 0.66G.S$$
 3.09 MPa \le 0.66 x 0.9 x 6.25 = 3.71 MPa

Espesor de neopreno

El movimiento horizontal de la superestructura del puente, Δh, será tomada como la máxima deformación posible causada por el flujo plástico, contracción y postensionamiento, combinado con los efectos térmicos.

Desplazamientos:

Por efecto de temperatura

$$\Delta L_1 = \alpha.\Delta T.(0.5*luz_pte)$$

$$\Delta L_1 = 0.0000108 \times 20 \times 0.5 \times 2090 = 0.23 \text{ cm}$$

Por flujo plástico del concreto

$$\Delta L_2 = 0.0006986 \times 0.5 \times 2090$$
 $\Delta L_2 = 0.73 \text{ cm}$

Por efecto sísmico

$$\Delta L_3 = 4.50 \text{ cm}$$

Por frenado

$$\Delta L_4 = 0.65 \text{ cm}$$

desplazamiento total (u1) : $\Delta h = 1.61$ cm

Espesor mínimo del neopreno

el espesor mínimo del neopreno será dos veces el desplazamiento total

[A 14.7.5.3.4-1]

$$h_{rt} = 2\Delta L = 2 x 1.61 cm = 3.21 cm$$
 (espesor total)

 $h_{ri} = 1.20 \text{ cm}$ (espesor de una capa de neopreno)

de capas interiores = 5

USE $h_{rt} = 7.20 cm$

Deflexión instantánea a compresión

la deflexión instantánea δ , puede evaluarse como:

$$\delta = \Sigma \cdot \varepsilon_{i} h_{ri}$$
 [A 14.7.5.3.3-1]

donde

 $\epsilon_{\rm i}$ = deformación a compresión instantánea de la capa de neopreno ith

 h_{ri} = espesor de la capa de neopreno (mm)

Esfuerzo de	Factor de Forma grado 60							
compresión	3	4	5	6	9	12	6.25	
0.00 MPa	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
2.00 MPa	3.96	2.79	2.09	1.58	1.36	1.28	1.57	
4.00 MPa	6.99	4.97	3.71	2.88	2.46	2.24	2.85	
6.00 MPa	7.00	6.78	5.15	3.95	3.45	3.13	3.91	
8.00 MPa	7.00	7.00	6.37	4.98	4.35	3.86	4.93	
10.00 MPa	7.00	7.00	7.00	5.83	5.20	4.55	5.78	

$$\sigma_s$$
 = 6.49 MPa ==> ϵ = 4.16% δ = 72 x 0.0416 = 2.992 mm

Capacidad de rotación del apoyo

$$\theta_{\text{max}} = \frac{2\delta}{L} \qquad \theta_{\text{máx}} = 2 \times 2.992 / 240 = \qquad 0.0249320$$

$$\theta_{\text{s}} = 0.003632^* (1+0.35) \qquad + \qquad 0.002317 \qquad + - \qquad 0.005 \qquad = \qquad 0.01222 \text{ rad}$$
 (rot. por cargas permanentes incluye crrep) (rot. por sobrecarga) (rotación por incertidumbres)

Cumple con la condición de giro máximo

Combinación de rotación y compresión

condición de no levantamiento

$$\sigma_s > \sigma_{up\,min} = 1.0 \text{G.S} \left(\frac{\theta_s}{n}\right) \left(\frac{B}{h_{ri}}\right)^2 \tag{$\text{A } 14.7.5.3.5-1]}$$

$$\theta_s = \quad 0.01222 \, \text{rad} \quad \text{rotación de diseño} \qquad S = \quad 6.250 \, \text{factor de forma}$$

$$n = \quad 6 \qquad \text{número de capas}$$

$$B = \quad 240 \, \text{mm} \qquad \text{longitud en la dirección de la rotación}$$

$$G = \quad 1.14 \, \text{MPa} \qquad \text{módulo de corte promedio}$$

$$h_{ri} = \quad 12 \, \text{mm}$$

$$\sigma_{upmin} = \quad 5.8048 \qquad \sigma_s = 6.49 \, \text{MPa} \qquad \text{Bien}$$

Condición que limita la excesiva compresión

$$\sigma_{s} < \sigma_{C\,\text{max}} = 1.875\,G\,S \Biggl(1 - 0.20 \biggl(\frac{\theta_{s}}{n}\biggr) \biggl(\frac{B}{h_{\,\text{ri}}}\biggr)^{2}\Biggr)$$
 [A 14.7.5.3.5-2]
$$G = \qquad 0.9 \;\text{MPa} \qquad \text{m\'odulo de corte m\'inimo}$$

$$\sigma_{C\,\text{max}} = \; 8.8283 \qquad \qquad \sigma_{s} = 6.49 \;\text{MPa} \qquad \qquad \text{Bien}$$

Estabilidad [A 14.7.5.3.6]

con la finalidad de prevenir inestabilidad en el estado límite de servicio, el esfuerzo promedio a compresión, se limita a un medio de los esfuerzos predichos por pandeo.

$$\sigma_s \leq \sigma_{cr} = \frac{G.S}{2A - B}$$
 [A 14.7.5.3.6-1]
$$A = \frac{1.92 \frac{h_{rt}}{L}}{\sqrt{1 + \frac{2.0L}{W}}} \qquad B = \frac{2.67}{(S + 2.0)* \left(1 + \frac{L}{4.0W}\right)}$$

$$A = 0.3883 \qquad B = 0.281$$

$$\sigma_{cr} = 11.36 \quad \text{MPa} \qquad \text{el esfuerzo crítico es mayor que el esfuerzo actuante} \qquad \text{BIEN}$$

Placas de refuerzo

El espesor de las placas de refuerzo deberá satisfacer: (artículo 14.7.5.3.7)

i) Para el estado límite de servicio

$$\label{eq:hs} {\bf h_s} \geq \frac{3.h_{\rm max}\,\sigma_s}{{\rm Fy}} \hspace{1cm} \text{[A 14.7.5.3.7-1]}$$

 $h_{max} = 12 \text{ mm}$

máximo espesor de una capa de neopreno

Fy = 250 MPa

(Esfuerzo de fluencia del acero de refuerzo) hs > 0.9 mm

ii) Para el estado límite de fatiga

$$\label{eq:hs} {\rm h_s} \geq \frac{2.0 {\rm h_{max}} \, \sigma_L}{\Delta {\rm F_{TH}}} \hspace{1cm} \text{[A 14.7.5.3.7-2]}$$

donde :

 σ_L = 3.09 MPa (esfuerzo a compresión por efecto a sobrecarga)

 ΔF_{TH} = 165.00 MPa para categoría A

hs > 0.4 mm

USE hs = 3.0 mmOK

Resumiendo:

Espesor total del neopreno 90

W 400 mm

L 240 mm

5 capas de neopreno de e = y 2 capas de neopreno de e = 12 mm 6 mm

6 placas interm. de acero e= 3 mm

espesor total = 90 mm espesor neto = 72 mm

u1 = 1.61 cm(desplazamiento horizontal por dilatación y creep del concreto)

u2 = 4.50 cm(desplazamiento horizontal por sismo)