

"ESTUDIO DE PREINVERSIÓN A NIVEL DE PERFIL DEL PROYECTO DE MEJORAMIENTO DE LA CARRETERA DV. POMABAMBA - SIHUAS - HUACRACHUCO - SAN PEDRO DE CHONTA - UCHIZA - EMP. PE-5N POR NIVELES DE SERVICIO"

GEOLOGIA, SUELOS Y PAVIMENTOS

VOLUMEN III TOMO 5.17

DISEÑO DE PAVIMENTO

INFORME TECNICO N° 03:
Informe Final

TRAMITE INC. AND TRAMITE IN THE INC. IN TH

NOVIEMBRE 2020

DISEÑO PAVIMENTOS

ESTUDIO DE PREINVERSIÓN A NIVEL PERFIL DEL PROYECTO DE MEJORAMIENTO DE LA CARRETERA DV. POMABAMBA – SIHUAS – HUACRACHUCO – SAN PEDRO - DE CHONTA – UCHIZA - EMP. PE 5N POR NIVELES DE SERVICIO

INDICE

- 1. INTRODUCCIÓN
- 2. GENERALIDADES
- 3. OBJETIVOS
- 4. UBICACIÓN
- 5. SECTORIZACIÓN DE LA VIA
- 6. DISEÑO DEL PAVIMENTO
- 7. SN REQUERIDO
- 8. ALTERNATIVAS DE DISEÑO
- 9. CONCLUSIONES Y RECOMENDACIONES.

ANEXOS

DISEÑO PAVIMENTOS

ESTUDIO DE PREINVERSIÓN A NIVEL PERFIL

DEL PROYECTO DE MEJORAMIENTO DE LA CARRETERA DV. POMABAMBA – SIHUAS – HUACRACHUCO – SAN PEDRO - DE CHONTA – UCHIZA - EMP. PE 5N POR NIVELES DE SERVICIO

1. INTRODUCCIÓN

El proyecto de mejoramiento en pavimentos se realiza para los tramos II, III, IV y V que actualmente se encuentran en afirmado, estos tramos han sido evaluados en campo y posteriormente se han elaborado trabajos de laboratorio con cuyos resultados a este nivel de proyecto se proponen las alternativas de pavimentación básica que tienen el siguiente dominio lógico:

- ✓ Se han empleado los criterios AASHTO'93 (Part III, Chapter 3 Guides for Field Data Collection) para la determinación de sectores de características homogéneas.
- ✓ Definición de espesor mínimo requerido para la capa granular determinada aplicando el método de diseño de capas de revestimiento granular del Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito del MTC, el mismo que está en función del CBR de diseño y al tráfico expresado en Número de Repeticiones de EE de 8.2t.
- ✓ Definido el espesor de la Capa Granular requerida, éste se compara con el espesor de material granular existente, y de la diferencia se obtendrá la adición de espesor de material granular a colocar.
- ✓ Estabilización de la capa superior obteniendo un número estructural que corresponda a la necesidad del tramo. Este trabajo se efectuará según los casos siguientes:
 - a) Caso 1 o alternativa 1: Suelo estabilizado con emulsión asfáltica (EG-2013: Sección 301.E). En este caso se prevé la adición de material de base granular estabilizado con un riego de emulsión de curado lento, para dar lugar a una capa superior con el Nivel de Servicio exigido. Previamente se coloca una capa para imprimación con emulsión catiónica CSS-1h

MIGUEL DIA ZVA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 SPECIALISTA EN GEOLOGIA

JOSE FERNANDO LUNA HUAMA INGENERO CIVIL Reg. CIP N° 32374

diluido con agua (EG-2013: S416), y en la superficie se colocará un micropavimento e=1.2 cm (EG-2013: Seccion 425).

- b) Caso 2 o Alternativa 2: Suelo estabilizado con Cemento Portland (PCA, EG-2013: Sección 301.A). En este caso se prevé una estabilización de material de préstamo de cantera con cemento portland y, la metodología a aplicar cumple con las normas de estabilización de suelos en caminos de bajo tránsito. Se aplicará una capa de imprimación con emulsión catiónica CSS-1h diluido con agua (EG-2013: S416) y como capa superficial se colocará Slurry Seal, e=1.0cm (Norma ISSA A105 Especificaciones para Slurry Seal), excepto en Tramo IV.1 donde se colocará Tratamiento Superficial Simple, Grava Tamaño Max. 3/8" (EG-2013: Sección 418).
- c) Caso 3 o Alternativa 3: Suelo estabilizado con Cemento Portland (1.8% en peso) más aditivo aceite sulfonado (0.04 lt/m3) e=25 cm (PCA, EG-2013: Sección 301.A). En este caso se prevé una estabilización de material de préstamo de cantera con cemento portland y, la metodología a aplicar cumple con las normas de estabilización de suelos en caminos de bajo tránsito. Se aplicará una capa de imprimación con emulsión catiónica CSS-1h diluido con agua (EG-2013: S416) y como capa superficial se colocará Tratamiento Superficial Simple, Grava Tamaño Max. 3/8" (EG-2013: Sección 418), excepto en Tramo IV.1 donde se colocará micropavimento doble e=2.5 cm (EG-2013: Sección 425).

Las soluciones adoptadas, cumplen con las exigencias del método de diseño de capas de revestimiento granular del Manual de Suelos y Pavimentos aprobado con RD Nº 10-2014-MTC/14 en cuanto al número estructural de la capa superficial, el diseño ha sido complementado con los criterios de la Guía AASHTO 1993, considerando un período de diseño de 10 años.

2. GENERALIDADES

La geomorfología de la zona está caracterizada por presentar áreas con relieves accidentados y ondulados. Durante los trabajos de campo se ha verificado los daños que causan las precipitaciones pluviales en el prisma vial, especialmente las fuertes erosiones en la superficie granular de rodadura (profundos surcos) por la deficiencia en su calidad (materiales limosos a arcillosos), favoreciendo la generación de otras fallas como encalaminados, disgregaciones y baches; se han ubicado también sectores donde por deficiencia en el drenaje (colmatación de cunetas, o inexistencia de ellas) se han presentado deformaciones en la plataforma.

MIGUEL DIAZVA SQUEZ INGENIERO GEOLOGO Reg. CIP № 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

OSE FERNANDO LUNA HUAMAN INGENIERO CIVIL Reg. CIP N° 32374 JEFE DE ESTUDIO

3. OBJETIVO

Definir la estructura a nivel de afirmado o mejoramiento de pavimento a nivel de soluciones básicas, conforme a actuales metodologías de diseño de aceptación internacional, empleando información propia obtenida en los trabajos geotécnicos, topográficos, tráfico, y disponibilidad de materiales adecuados en la zona del proyecto.

4. UBICACIÓN

El tramo de la Carretera Dv. Pomabamba – Sihuas – Huacrachuco – San Pedro de Chonta – Uchiza - Emp. PE 5N atraviesa poblados, Distritos y Provincias de los Departamentos de Ancash, Huánuco y San Martín, geográficamente están situados en la parte norte del país, en la cadena Occidental y Oriental de los Andes. El clima es variado ya que atraviesa costa, sierra y selva denominándose a este tipo de carretera de penetración.

A continuación, se detalla la ubicación política por ruta:

RUTA PE-12A: Dv. Pomabamba – Emp. PE – 5N

Departamento : **Ancash**Provincia : Sihuas

Distrito : Cashapampa (Pasacancha)
Distrito : Sihuas, (Sihuas, Shasqui).

Departamento: Huánuco

Provincia : Marañon

Distrito : Huacrochuco (Mamahuaje, Nueva Esperanza, Huacrochuco,

Chonas.

Distrito : Cholon (San Pedro de Chonta).

Departamento: San Martin

Provincia : Tocache

Distrito : Uchiza (Crisnejas, Cajatambo, Pucayacu, Pampayacu, Uchiza, El

Porvenir, Santa Lucía y Nueva Unión).

MIGUEL DIA ZVA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 SPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSÉ FERNANDO LUNA HIJAMAN INGENERO CIVE RAG. CIP N° 32324 JEFE BE ESTUDIO

3. OBJETIVO

Definir la estructura a nivel de afirmado o mejoramiento de pavimento a nivel de soluciones básicas, conforme a actuales metodologías de diseño de aceptación internacional, empleando información propia obtenida en los trabajos geotécnicos, topográficos, tráfico, y disponibilidad de materiales adecuados en la zona del proyecto.

4. UBICACIÓN

El tramo de la Carretera Dv. Pomabamba – Sihuas – Huacrachuco – San Pedro de Chonta – Uchiza - Emp. PE 5N atraviesa poblados, Distritos y Provincias de los Departamentos de Ancash, Huánuco y San Martín, geográficamente están situados en la parte norte del país, en la cadena Occidental y Oriental de los Andes. El clima es variado ya que atraviesa costa, sierra y selva denominándose a este tipo de carretera de penetración.

A continuación, se detalla la ubicación política por ruta:

RUTA PE-12A: Dv. Pomabamba – Emp. PE – 5N

Departamento : Ancash
Provincia : Sihuas

Distrito : Cashapampa (Pasacancha)
Distrito : Sihuas, (Sihuas, Shasqui).

Departamento: Huánuco

Provincia : Marañon

Distrito : Huacrochuco (Mamahuaje, Nueva Esperanza, Huacrochuco,

Chonas.

Distrito : Cholon (San Pedro de Chonta).

Departamento: San Martin

Provincia : Tocache

Distrito : Uchiza (Crisnejas, Cajatambo, Pucayacu, Pampayacu, Uchiza, El

Porvenir, Santa Lucía y Nueva Unión).

MIGUEL DÍA Z VÁ SQUEZ INGENIERO GEOLOGO Reg. CIP № 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL Reg. CIP N° 32374

Progresivas Inicio y Fin

Dv. Pomabamba : 71+072.92

Emp. PE-5N : 342+859

Figura N° 1: Ruta PE-12A: Dv Pomabamba – Emp. PE-5N

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL Reg. CIP N° 32374 JEFE DE ESTUDIO

CUADRO N°01: Tramificación de la carretera (Situación actual)

Ruta	Tramo	Sub	DESCRIPCION	N DEL TRAMO	PROGRES PROY	-	LONG.	PAVIMENTO	TIPO DE INTERVENCION	ESTACION RELACIONADA
		Tramo	Inicio	Fin	INICIO	FIN	Km	EXISTENTE		RELACIONADA
	TRAMO I	I	Dv. Pomabamba	Sihuas (Inicio zona urbana)	71+072.92	92+540.00	21.467	SOLUCION BASICA	Conservacion	F-1
	TICAMOT	1.2	Sihuas (Inicio zona urbana)	Sihuas (Fin zona urbana)	92+540.00	94+840.00	2.300	PAV. RIGIDO	Conservación	L
	TRAMO II	II.1	Sihuas (Fin zona urbana)	Dv. Tayabamba	94+840.00	143+500.00	48.660	MAT GRANULAR	Inversión	E-2
	TRAMO III	III.1	Dv. Tayabamba	Huacrachuco (Inicio zona urbana)	143+500.00	177+694.00	34.194	MAT GRANULAR	Inversión	E-3
	TRAWOTII	III.2	Huacrachuco (Inicio zona urbana)	Huacrachuco (Fin zona urbana)	177+694.00	178+010.00	0.316	PAV RIGIDO	Conservación	
	TRAMO IV	IV.1	Huacrachuco (Fin zona urbana)	San Pedro de Chonta (Inicio zona urbana)	178+010.00	241+900.00	63.890	MAT GRANULAR	Inversión	F-4
		IV.2	San Pedro de Chonta (Inicio zona urbana)	San Pedro de Chonta (Fin zona urbana)	241+900.00	242+390.00	0.490	PAV RIGIDO	Conservación	1
12A	TRAMO V	٧	San Pedro de Chonta (Fin zona urbana)	Ajenjo	242+390.00	252+600.00	10.210	MAT GRANULAR	Inversión	E-5
	TRAMO VI	VI	Ajenjo	San Antonio	252+600.00	299+780.00	47.180	MAT GRANULAR	Conservación	E-5
FE		VII.1	San Antonio	Crisnejas (Inicio zona urbana)	299+780.00	305+150.00	5.370	MAT GRANULAR	Conservación	E-6
	TRAMO VII	VII.2	Crisnejas (Inicio zona urbana)	Crisnejas (Fin zona urbana)	305+150.00	305+560.00	0.410	SOLUCION BASICA	Conservación	
	TRAINO VII	VII.3	Crisnejas (Fin zona urbana)	Uchiza (Inicio zona urbana)	305+560.00	319+228.00	13.668	MAT GRANULAR	Conservación	L-0
		VII.4	Uchiza (Inicio zona urbana)	Uchiza (Fin zona urbana)	319+228.00	319+570.00	0.342	PAV RIGIDO	Conservacion	
		VIII.1	Uchiza (Fin zona urbana)	Santa Lucia (Inicio solución básica)	319+570.00	322+040.00	2.470	MAT GRANULAR	Conservación	
	TRAMO VIII	VIII.2	Santa Lucia (Inicio solución básica)	Inicio Zona Puente (en obra)	322+040.00	337+400.00	15.360	SOLUCION BASICA	Conservación	E-7
		VIII.3	Inicio Zona Puente (en obra)	Santa Lucia (Fin solución básica)	337+400.00	337+600.00	0.200	SOLUCION BASICA	Conservación	
	TRAMOIX	IX.1	Santa Lucia (Fin solución básica)	Fin Zona Puente (en obra)	337+600.00	338+150.00	0.550	MAT GRANULAR	Conservación	
		IX.2	Fin Zona Puente (en obra)	Emp PE-5N	338+150.00	342+859.00	4.709	MAT GRANULAR	Conservación	E-8
	-		·			TOTAL	271.786			

Elaboración Propia en base a Informe Topografía, Diseño y Seguridad Vial; Tráfico. Agosto 2020.

5. SECTORIZACION DE LA VIA

De acuerdo a las consideraciones de proyecto se han definido tramos de inversión los cuales son los siguientes: Tramo II, Tramo III, Tramo IV y Tramo V. Esto debido a que el Tramo I ya se encuentra a nivel de solución básica; los Tramos VI y VII se encuentran dentro de un Proyecto de Inversión Pública en elaboración de Estudio Definitivo, y los Tramos VIII y IX tienen Ejes Equivalentes mayores a 1 000,000.

La sectorización de la subrasante se ha realizado de acuerdo al deterioro superficial de la vía, tráfico, clasificación de suelos y capacidad portante; que nos ha permitido obtener sectores claramente definidos.

En base a los resultados de laboratorio se determina los valores de la capacidad de soporte de los suelos (CBR), el mismo que para fines de diseño será calculado en base a una metodología estadística, con la cual se determinará la capacidad de soporte de diseño de los suelos (CBR diseño). En tal sentido se ha encontrado en los 271.786 Km cuatro sectores diferenciados de los cuales los tramos del II al V son vías que se encuentran a nivel de trocha carrozable. Solo se utilizará los CBR de los tramos II al V.

MIGUEL DIAZVA SQUEZ INGENIERO GEOLOGO Reg. CIP № 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL Rag. CIP N° 32374 JEFE BE ESTUDIO

CUADRO N°02: TRAMOS DE INVERSION DONDE SE REQUIERE DISEÑO DE PAVIMENTO

DENOMINACION	TRAMO	SUB TRAMO	INICIO	FINAL	LONGITUD KM	CBR 95 %
Sihuas – Dv. Tayabamba	П	=	94 + 840	143 + 500	48.660	38.60
Dv. Tayabamba - Huacrachuco	III	III.1	143 + 500	177 + 694	34.194	37.20
Huacrachuco – San Pedro de Chonta	IV	IV.1	178+010	241+900	63.890	36.20
San Pedro de Chonta – Ajenjo	V	٧	242 + 390	252 + 600	10.210	38.50

Elaboración Propia. Estudios de Topografía, Diseño y Seguridad Vial; Estudio de Geología, Suelos y Pavimentos. Agosto 2020.

5.1 SUBRASANTE.

Elaboración Propia

De los resultados y la sectorización realizada podemos indicar aplicando el Manual de Diseño de Vías No Pavimentadas de Bajo Volumen de Tráfico del Ministerio de Transportes y Comunicaciones, en su capítulo referente a Suelos y Pavimento, se clasifica la subrasante según el Cuadro N°03 y Cuadro N°04:

CUADRO N° 03

CBR POR CATEGORIA SUBRASANTE

CATEGORIAS DE SUBRASANTE	CBR
S ₀ : Sub rasante Inadecuada	CBR < 3%
S ₁ : Sub rasante Pobre	De CBR ≥ 3% a CBR < 6%
S ₂ : Sub rasante Regular	De CBR ≥ 6% a CBR < 10%
S ₃ : Sub rasante Buena	De CBR ≥ 10% a CBR < 20%
S ₄ : Sub rasante Muy Buena	De CBR ≥ 20% a CBR < 30%
S ₅ : Sub rasante Extraordinaria	De CBR ≥ 30%

CUADRO N°04

CLASIFICACION DEL IP

Índice de Plasticidad	Plasticidad	Características
IP > 20	Alta	Suelos muy arcillosos
IP ≤ 20 IP > 7	Media	Suelos arcillosos
IP ≤ 7	Baja	Suelos poco arcillosos
IP = 0	No Plástico (NP)	Suelos exentos de arcilla

Según los cuadros anteriores se efectúa la clasificación en la vía como se muestra a continuación:

MIGUEL DIAZVA SQUEZ INGENIERO GEOLOGO Reg. CIP № 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAI INGENIERO CIVIL Reg. CIP N° 32374

CUADRO N°05: CATEGORIZACION DE SUBRASANTE Y PLASTICIDAD

	CUADRO N°05: CATEGORIZACION DE SUBRASANTE Y PLASTICIDAD											
N	CALICATA	PROGRESIVA	CBR 95 %	SUBRASANTE	PLASTICO IP	SUELOS DE PLASTICIDAD						
		TRA	MO I – de	l km 71+072 al km 94	+840							
1	C-1	71 +072	49.20	EXTRAORDINARIA	9.78	MEDIA						
2	C-2	73 + 572	46.10	EXTRAORDINARIA	3.91	BAJA						
3	C-3	76 +072	42.60	EXTRAORDINARIA	3.88	BAJA						
4	C-4	78 + 572	44.80	EXTRAORDINARIA	8.94	MEDIA						
5	C-5	81 +072	47.40	EXTRAORDINARIA	2.91	BAJA						
6	C-6	83 + 572	44.20	EXTRAORDINARIA	7.65	MEDIA						
7	C-7	86 +072	54.30	EXTRAORDINARIA	8.63	MEDIA						
8	C-8	88 + 572	45.30	EXTRAORDINARIA	7.05	MEDIA						
9	C-9	91 +072	34.90	EXTRAORDINARIA	NP	NO PLASTICO						
10	C-10	93 + 572										
TRAMO II – del km 94+840 al km 143+500												
11	C-11	96 +072	34.60	EXTRAORDINARIA	4.18	BAJA						
12	C-12	98 + 572	35.70	EXTRAORDINARIA	4.77	BAJA						
13	C-13	101 +072	39.70	EXTRAORDINARIA	6.71	BAJA						
14	C-14	103 + 572	38.50	EXTRAORDINARIA	7.83	MEDIA						
15	C-15	106 +072	38.80	EXTRAORDINARIA	NP	NO PLASTICO						
16	C-16	108 + 572	42.80	EXTRAORDINARIA	NP	NO PLASTICO						
17	C-17	111 +072	39.00	EXTRAORDINARIA	3.75	BAJA						
18	C-18	113 + 572	42.40	EXTRAORDINARIA	3.91	BAJA						
19	C-19	116 +072	36.80	EXTRAORDINARIA	NP	NO PLASTICO						
20	C-20	118 + 572	38.50	EXTRAORDINARIA	NP	NO PLASTICO						
21	C-21	121 +072	33.70	EXTRAORDINARIA	NP	NO PLASTICO						
22	C-22	123 + 572	37.10	EXTRAORDINARIA	8.25	MEDIA						
23	C-23	126 +072	34.20	EXTRAORDINARIA	7.71	MEDIA						
24	C-24	128 + 572	33.20	EXTRAORDINARIA	7.36	MEDIA						
25	C-25	131 +072	48.80	EXTRAORDINARIA	NP	NO PLASTICO						
26	C-26	133 + 572	43.00	EXTRAORDINARIA	NP	NO PLASTICO						
27	C-27	136 +072	37.50	EXTRAORDINARIA	NP	NO PLASTICO						
28	C-28	138 + 572	35.70	EXTRAORDINARIA	7.81	MEDIA						
29	C-29	141 +072	44.30	EXTRAORDINARIA	NFUS	∬NO PLASTICO						

MIGUEL DIA ZVA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL Reg. CIP N° 32374 JEFE DE ESTUDIO

N	CALICATA	PROGRESIVA	CBR 95 %	SUBRASANTE	INDICE PLASTICO IP	SUELOS DE PLASTICIDAD
		TRAM	IO III – del	km 143+500 al km 17	78+010	
30	C-30	143 + 572	27.30	MUY BUENA	8.86	MEDIA
31	C-31	146 +072	40.30	EXTRAORDINARIA	3.92	BAJA
32	C-32	148 + 572	37.80	EXTRAORDINARIA	NP	NO PLASTICO
33	C-33	151 +072	41.70	EXTRAORDINARIA	8.91	MEDIA
34	C-34	153 + 572	44.00	EXTRAORDINARIA	8.63	MEDIA
35	C-35	156 +072	35.80	EXTRAORDINARIA	8.80	MEDIA
36	C-36	158 + 572	34.80	EXTRAORDINARIA	9.05	MEDIA
37	C-37	161 +072	36.00	EXTRAORDINARIA	9.97	MEDIA
38	C-38	163 + 572	28.50	MUY BUENA	9.36	MEDIA
39	C-39	166 +072	25.70	MUY BUENA	8.92	MEDIA
40	C-40	168 + 572	41.00	EXTRAORDINARIA	3.66	BAJA
41	C-41	171 +072	35.10	EXTRAORDINARIA	7.14	MEDIA
42	C-42	173 + 572	33.60	EXTRAORDINARIA	6.67	BAJA
43	C-43	176 +072	59.60	EXTRAORDINARIA	NP	NO PLASTICO
		TRAM	IO IV – del	km 178+010 al km 24	42+390	
44	C-44	178 + 572	29.80	MUY BUENA	3.11	BAJA
45	C-45	181 +072	27.30	MUY BUENA	NP	NO PLASTICO
46	C-46	183 + 572	33.00	EXTRAORDINARIA	8.33	MEDIA
47	C-47	186 +072	29.20	MUY BUENA	NP	NO PLASTICO
48	C-48	188 + 572	36.00	EXTRAORDINARIA	8.62	MEDIA
49	C-49	191 +072	50.40	EXTRAORDINARIA	5.84	BAJA
50	C-50	193 + 572	43.50	EXTRAORDINARIA	3.76	BAJA
51	C-51	196 +072	39.00	EXTRAORDINARIA	10.12	MEDIA
52	C-52	198 + 572	30.90	EXTRAORDINARIA	NP	NO PLASTICO
53	C-53	201 +072	44.40	EXTRAORDINARIA	9.58	MEDIA
54	C-54	203 + 572	30.60	EXTRAORDINARIA	8.06	MEDIA
55	C-55	206 +072	37.50	EXTRAORDINARIA	9.89	MEDIA
56	C-56	208 + 572	36.60	EXTRAORDINARIA	9.75	MEDIA
57	C-57	211 +072	34.40	EXTRAORDINARIA	NP	NO PLASTICO
58	C-58	213 + 572	29.40	MUY BUENA	9.77	MEDIA
59	C-59	216 +072	33.10	EXTRAORDINARIA	NP NP	PLASTICO

MIGUEL DIA ZVA SQUEZ INGENIERO GEOLÓGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL Reg. CIP N° 32374 JEFE DE ESTUDIO

N	CALICATA	PROGRESIVA	CBR 95 %	SUBRASANTE	INDICE PLASTICO IP	SUELOS DE PLASTICIDAD				
60	C-60	218 + 572	45.50	EXTRAORDINARIA	NP	NO PLASTICO				
61	C-61	221 +072	52.00	EXTRAORDINARIA	NP	NO PLASTICO				
62	C-62	223 + 572	35.50	EXTRAORDINARIA	NP	NO PLASTICO				
63	C-63	226 +072	33.20	EXTRAORDINARIA	NP	NO PLASTICO				
64	C-64	228 + 572	31.40	EXTRAORDINARIA	NP	NO PLASTICO				
65	C-65	231 +072	35.60	EXTRAORDINARIA	NP	NO PLASTICO				
66	C-66	233 + 572	42.30	EXTRAORDINARIA	NP	NO PLASTICO				
67	C-67	236 +072	32.40	EXTRAORDINARIA	NP	NO PLASTICO				
68	C-68	238 + 572	31.60	EXTRAORDINARIA	NP	NO PLASTICO				
69	C-69	241 +072	37.20	EXTRAORDINARIA	NP	NO PLASTICO				
	TRAMOS V y VI – del km 242+390 al km 299+780									
70	C-70	243 + 572	27.50	MUY BUENA	NP	NO PLASTICO				
71	C-71	246 +072	45.40	EXTRAORDINARIA	9.83	MEDIA				
72	C-72	248 + 572	38.10	EXTRAORDINARIA	3.07	BAJA				
73	C-73	251 +072	31.40	EXTRAORDINARIA	7.76	MEDIA				
74	C-74	253 + 572	43.50	EXTRAORDINARIA	NP	NO PLASTICO				
75	C-75	256 +072	42.20	EXTRAORDINARIA	10.33	MEDIA				
76	C-76	258 + 572	39.50	EXTRAORDINARIA	NP	NO PLASTICO				
77	C-77	261 +072	42.60	EXTRAORDINARIA	NP	NO PLASTICO				
78	C-78	263 + 572	33.00	EXTRAORDINARIA	NP	NO PLASTICO				
79	C-79	266 +072	39.50	EXTRAORDINARIA	NP	NO PLASTICO				
80	C-80	268 + 572	36.50	EXTRAORDINARIA	NP	NO PLASTICO				
81	C-81	271 +072	39.00	EXTRAORDINARIA	8.95	MEDIA				
82	C-82	273 + 572	36.40	EXTRAORDINARIA	9.43	MEDIA				
83	C-83	276 +072	39.40	EXTRAORDINARIA	8.57	MEDIA				
84	C-84	278 + 572	33.40	EXTRAORDINARIA	7.72	MEDIA				
85	C-85	281 +072	33.00	EXTRAORDINARIA	10.66	MEDIA				
86	C-86	283 + 572	47.50	EXTRAORDINARIA	NP	NO PLASTICO				
87	C-87	286 +072	48.40	EXTRAORDINARIA	NP	NO PLASTICO				
88	C-88	288 + 572	30.60	EXTRAORDINARIA	8.71	MEDIA				
89	C-89	291 +072	35.40	EXTRAORDINARIA	NP	NO PLASTICO				
90	C-90	293 + 572	43.50	EXTRAORDINARIA	3.61	BAJA				

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENERO CIVIL Reg. CIP N° 32374 JEFE DE ESTUDIO

N	CALICATA	PROGRESIVA	CBR 95 %	SUBRASANTE	INDICE PLASTICO IP	SUELOS DE PLASTICIDAD
91	C-91	296 +072	40.80	EXTRAORDINARIA	9.58	MEDIA
92	C-92	298 + 572	52.50	EXTRAORDINARIA	5.90	BAJA
		TRAM	O VII – de	l km 299+780 al km 3	19+570	
93	C-93	301 +072	39.50	EXTRAORDINARIA	NP	NO PLASTICO
94	C-94	303 + 572	43.60	EXTRAORDINARIA	8.58	MEDIA
95	C-95	306 +072	31.80	EXTRAORDINARIA	7.39	MEDIA
96	C-96	308 + 572	71.00	EXTRAORDINARIA	NP	NO PLASTICO
97	C-97	311 +072	69.70	EXTRAORDINARIA	7.65	MEDIA
98	C-98	313 + 572	30.00	EXTRAORDINARIA	2.65	BAJA
99	C-99	316 +072	21.40	MUY BUENA	2.41	BAJA
100	C-100	318 + 572	28.00	MUY BUENA	5.30	BAJA
		TRAM	O VIII – de	el km 319+570 al km 3	37+600	
101	C-101	321 +072	32.40	EXTRAORDINARIA	3.99	BAJA
102	C-102	323 + 572	30.50	EXTRAORDINARIA	5.14	BAJA
103	C-103	326 +072	36.20	EXTRAORDINARIA	3.89	BAJA
104	C-104	328 + 572	50.40	EXTRAORDINARIA	NP	NO PLASTICO
105	C-105	331 +072	16.40	BUENA	15.92	MEDIA
106	C-106	333 + 572	46.80	EXTRAORDINARIA	NP	NO PLASTICO
107	C-107	336 +072	45.20	EXTRAORDINARIA	3.07	BAJA
		TRAN	IO IX – del	km 337+600 al km 34	42+859	
108	C-108	338 + 572	18.80	EXTRAORDINARIA	4.33	BAJA
109	C-109	341 +072	48.00	EXTRAORDINARIA	RAORDINARIA	
110	C-110	341 + 970	38.80	EXTRAORDINARIA	NP	NO PLASTICO

Elaboración Propia. Progresivas referidas a la situación actual.

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL Reg. CIP N° 32374 JEFE BE ESTUDIO

Según la sectorización anterior se puede determinar:

CUADRO N°06: CLASIFICACION SUBRASANTE POR TRAMO

N	INICIO	FINAL	CBR 95 %	SUBRASANTE
I	71 + 072	94 + 840	45.40	EXTRAORDINARIA
II	94 + 840	143 + 500	49.67	EXTRAORDINARIA
III	143 + 500	178 + 010	33.59	EXTRAORDINARIA
IV	178 + 010	242 + 390	64.56	EXTRAORDINARIA
V	242 + 390	252 + 600	10.49	EXTRAORDINARIA
VI	252 + 600	299 + 780	10.49	EXTRAORDINARIA
VII	299 + 780	319 + 570	44.90	EXTRAORDINARIA
VIII	319 + 570	337 + 600	34.50	EXTRAORDINARIA
IX	337 + 600	342 + 859	37.70	EXTRAORDINARIA

Elaboración Propia. Progresivas de acuerdo a Proyecto.

6. DISEÑO DEL PAVIMENTO

En este capítulo se define la estructura del pavimento a nivel de soluciones básicas, empleando el método de diseño específico para tal fin, que se adaptan a las características ambientales y geomorfológicas señaladas, así como a la disponibilidad de materiales existentes en la zona.

MÉTODO AASHTO

La metodología AASHTO es reconocida a nivel mundial porque se basa en valiosa información experimental. Consiste en determinar un Número Estructural (SN) requerido por el pavimento a fin de soportar el volumen de tránsito satisfactoriamente durante su periodo de diseño. El procedimiento desarrollado es conforme con lo expuesto en Guide for Desingn of Pavement Structures 1993. Según la fórmula de la AASHTO 1993 dentro de las consideraciones del método están:

El Módulo de Resilente (Mr) es una medida de las propiedades elásticas de los suelos. Debido a la escasa información local, este parámetro se ha establecido en función a algoritmos reconocidos internacionalmente.

> MIGUEL DIAZ VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUE LOS Y PAVIMENTOS

Reg. CIP N° 32374

IFFE DE ESTUDIO

El Coeficiente de Drenaje toma en cuenta los efectos de los distintos niveles de eficiencia del drenaje en el comportamiento de la estructura. Este parámetro modifica el coeficiente estructural de las capas granulares (sub-base y base granular).

El método incorpora la estadística para establecer un cierto grado de confiabilidad en el proceso de diseño, este aspecto es incorporado mediante el Nivel de Confiabilidad (R) que este a su vez se basa en la distribución normal y es función de la desviación estándar (S0) que se ubica entre 0.4 y 0.5.

El Índice de Serviciabilidad Final deberá ser tal que, culminado el periodo de diseño, la vía (superficie de rodadura) ofrezca una adecuada serviciabilidad.

Los números estructurales SN, del pavimento son obtenidos mediante la siguiente expresión:

$$\log W_{18} = Z_R S_0 + 9.36 \log(SN+1) - 0.20 + \frac{\log\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{\left(SN + 1\right)^{5.19}}} + 2.32 \log M_R - 8.07$$

La expresión que relaciona el número estructural con los espesores de capa es:

Dónde:

ai = Coeficientes estructurales o de capa

mi = Coeficientes de drenaje

Di = Espesor de capa

MIGUEL DIAZVA SQUEZ INGENIERO GEOLOGO Reg. CIP № 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENERO CIVIL Reg. CIP N° 32374

PARÁMETROS DE DISEÑO

> ESTUDIO MECANICA DE SUELOS

Del estudio de Mecánica de Suelos se han obtenido las características del suelo de fundación de la vía, el resumen de los resultados de las pruebas realizadas se encuentra en el Cuadro N°07. De los resultados que se obtuvieron se puede tener las siguientes conclusiones:

Se realizaron 110 calicatas en el trazo de la vía ubicadas cada 2.50 km.

CUADRO N°07 RESUMEN DE RESULTADOS DE LABORATORIO

N°	CALICATA	PROGRESIVA	MUESTRA	PROFUNDIDAD		CLASIF	FICACION	CBR 95 %	
						sucs	ASSTHO		
1	C-1	71 +072	M1	0.00	1.50	GC	A-2-4 (0)	49.20	9.78
2	C-2	73 + 572	M1	0.00	1.50	GM	A-2-4 (0)	46.10	3.91
3	C-3	76 +072	M1	0.00	1.50	GM	A-1-b (0)	42.60	
4	C-4	78 + 572	M1	0.00	1.50	SC	A-4 (0)	44.80	8.94
5	C-5	81 +072	M1	0.00	1.50	GM	A-2-4 (0)	47.40	2.91
6	C-6	83 + 572	M1	0.00	1.50	GC	A-2-4 (0)	44.20	7.65
7	C-7	86 +072	M1	0.00	1.50	GC	A-2-4 (0)	54.30	8.63
8	C-8	88 + 572	M1	0.00	1.50	GM	A-2-4 (0)	45.30	7.05
9	C-9	91 +072	M1	0.00	1.50	GM	A-1-b (0)	34.90	NP
10	C-10	93 + 572							
11	C-11	96 +072	M1	0.00	1.50	GM	A-1-b (0)	34.60	4.18
12	C-12	98 + 572	M1	0.00	1.50	GM	A-1-b (0)	35.70	4.77
13	C-13	101 +072	M1	0.00	1.50	GM	A-2-4 (0)	39.70	6.71
14	C-14	103 + 572	M1	0.00	1.50	GC	A-2-4 (0)	38.50	7.83
15	C-15	106 +072	M1	0.00	1.50	GM	A-1-a (0)	38.80	NP
16	C-16	108 + 572	M1	0.00	1.50	GM	A-1-b (0)	42.80	NP
17	C-17	111 +072	M1	0.00	1.50	SM	A-2-4 (0)	39.00	3.75
18	C-18	113 + 572	M1	0.00	1.50	SM	A-1-b (0)	42.40	3.91
19	C-19	116 +072	M1	0.00	1.50	GM	A-1-b (0)	36.80	NP
20	C-20	118 + 572	M1	0.00	1.50	GM	A-1-b (0)	38.50	NP
21	C-21	121 +072	M1	0.00	1.50	GM	A-1-b (0)	33.70	NP
22	C-22	123 + 572	M1	0.00	1.50	GC	A-2-4 (0)	37.10	8.25
23	C-23	126 +072	M1	0.00	1.50	GC	A:2,4<0)	34.20	7.71
MIGUEL DIO 7 VO SQUE7									/ Amu

MIGUEL DIAZ VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

Reg. CIP N° 32374

JEFE DE ESTUDIO

N°	CALICATA	PROGRESIVA	MUESTRA	PROFUN	IDIDAD	CLASII	FICACION	CBR 95 %	INDICE DE PLASTICIDAD
						sucs	ASSTHO		
24	C-24	128 + 572	M1	0.00	1.50	GC	A-2-4 (0)	33.20	7.36
25	C-25	131 +072	M1	0.00	1.50	GM	A-1-b (0)	48.80	NP
26	C-26	133 + 572	M1	0.00	1.50	GM	A-1-b (0)	43.00	NP
27	C-27	136 +072	M1	0.00	1.50	GM	A-1-b (0)	37.50	NP
28	C-28	138 + 572	M1	0.00	1.50	GC	A-2-4 (0)	35.70	7.81
29	C-29	141 +072	M1	0.00	1.50	GM	A-2-4 (0)	44.30	NP
30	C-30	143 + 572	M1	0.00	1.50	GC	A-2-4 (0)	27.30	8.86
31	C-31	146 +072	M1	0.00	1.50	GM	A-2-4 (0)	40.30	3.92
32	C-32	148 + 572	M1	0.00	1.50	GM	A-1-b (0)	37.80	NP
33	C-33	151 +072	M1	0.00	1.50	GC	A-2-4 (0)	41.70	8.91
34	C-34	153 + 572	M1	0.00	1.50	GC	A-2-4 (0)	44.00	8.63
35	C-35	156 +072	M1	0.00	1.50	GC	A-4 (0)	35.80	8.80
36	C-36	158 + 572	M1	0.00	1.50	GC	A-4 (0)	34.80	9.05
37	C-37	161 +072	M1	0.00	1.50	GC	A-4 (0)	36.00	9.97
38	C-38	163 + 572	M1	0.00	1.50	GC	A-4 (0)	28.50	9.36
39	C-39	166 +072	M1	0.00	1.50	GC	A-2-4 (0)	25.70	8.92
40	C-40	168 + 572	M1	0.00	1.50	GM	A-2-4 (0)	41.00	3.66
41	C-41	171 +072	M1	0.00	1.50	GC	A-2-4 (0)	35.10	7.14
42	C-42	173 + 572	M1	0.00	1.50	GM	A-2-4 (0)	33.60	6.67
43	C-43	176 +072	M1	0.00	1.50	GM	A-2-4 (0)	59.60	NP
44	C-44	178 + 572	M1	0.00	1.50	GM	A-2-4 (0)	29.80	3.11
45	C-45	181 +072	M1	0.00	1.50	GM	A-2-4 (0)	27.30	NP
46	C-46	183 + 572	M1	0.00	1.50	GC	A-2-4 (0)	33.00	8.33
47	C-47	186 +072	M1	0.00	1.50	GM	A-2-4 (0)	29.20	NP
48	C-48	188 + 572	M1	0.00	1.50	GC	A-2-4 (0)	36.00	8.62
49	C-49	191 +072	M1	0.00	1.50	GM	A-4-1 (0)	50.40	5.84
50	C-50	193 + 572	M1	0.00	1.50	GM	A-4 (0)	43.50	3.76
51	C-51	196 +072	M1	0.00	1.50	GC	A-2-6 (0)	39.00	10.12
52	C-52	198 + 572	M1	0.00	1.50	GM	A-2-4 (0)	30.90	NP
53	C-53	201 +072	M1	0.00	1.50	SC	A-4 (1)	44.40	9.58
54	C-54	203 + 572	M1	0.00	1.50	SC	A-4-(1)	30.60	8.06

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 153883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL RAG. CIP N° 32374 JEFE DE ESTUDIO

N°	CALICATA	PROGRESIVA	MUESTRA	PROFUN	IDIDAD	CLASII	FICACION	CBR 95 %	INDICE DE PLASTICIDAD
						sucs	ASSTHO		
55	C-55	206 +072	M1	0.00	1.50	SC	A-4 (1)	37.50	9.89
56	C-56	208 + 572	M1	0.00	1.50	SC	A-4 (1)	36.60	9.75
57	C-57	211 +072	M1	0.00	1.50	GM	A-2-4 (0)	34.40	NP
58	C-58	213 + 572	M1	0.00	1.50	GC	A-4 (0)	29.40	9.77
59	C-59	216 +072	M1	0.00	1.50	GM	A-1-b (0)	33.10	NP
60	C-60	218 + 572	M1	0.00	1.50	GM	A-1-b (0)	45.50	NP
61	C-61	221 +072	M1	0.00	1.50	GM	A-1-b (0)	52.00	NP
62	C-62	223 + 572	M1	0.00	1.50	GM	A-1-b (0)	35.50	NP
63	C-63	226 +072	M1	0.00	1.50	GM	A-1-b (0)	33.20	NP
64	C-64	228 + 572	M1	0.00	1.50	GM	A-1-b (0)	31.40	NP
65	C-65	231 +072	M1	0.00	1.50	GM	A-1-b (0)	35.60	NP
66	C-66	233 + 572	M1	0.00	1.50	GM	A-1-b (0)	42.30	NP
67	C-67	236 +072	M1	0.00	1.50	SM	A-1-b (0)	32.40	NP
68	C-68	238 + 572	M1	0.00	1.50	GM	A-2-4 (0)	31.60	NP
69	C-69	241 +072	M1	0.00	1.50	GM	A-1-a (0)	37.20	NP
79	C-70	243 + 572	M1	0.00	1.50	GM	A-2-4 (0)	27.50	NP
71	C-71	246 +072	M1	0.00	1.50	GC	A-4 (1)	45.40	9.83
72	C-72	248 + 572	M1	0.00	1.50	GM	A-4 (0)	38.10	3.07
73	C-73	251 +072	M1	0.00	1.50	GC	A-4 (1)	31.40	7.76
74	C-74	253 + 572	M1	0.00	1.50	GM	A-2-4 (0)	43.50	NP
75	C-75	256 +072	M1	0.00	1.50	GC	A-2-6 (0)	42.20	10.33
76	C-76	258 + 572	M1	0.00	1.50	GM	A-1-b (0)	39.50	NP
77	C-77	261 +072	M1	0.00	1.50	GM	A-1-b (0)	42.60	NP
78	C-78	263 + 572	M1	0.00	1.50	GM	A-1-b (0)	33.00	NP
79	C-79	266 +072	M1	0.00	1.50	GM	A-1-b (0)	39.50	NP
80	C-80	268 + 572	M1	0.00	1.50	GM	A-1-b (0)	36.50	NP
81	C-81	271 +072	M1	0.00	1.50	GC	A-2-4 (0)	39.00	8.95
82	C-82	273 + 572	M1	0.00	1.50	SC	A-2-4 (0)	36.40	9.43
83	C-83	276 +072	M1	0.00	1.50	SC	A-2-4 (0)	39.40	8.57
84	C-84	278 + 572	M1	0.00	1.50	GC	A-2-4 (0)	33.40	7.72
85	C-85	281 +072	M1	0.00	1.50	GC	A-6 (0)	33.00	10.66

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

N°	CALICATA	PROGRESIVA	MUESTRA	PROFUNDIDAD		PROFUNDIDAD CLASIFICACION		CBR 95 %	INDICE DE PLASTICIDAD
						sucs	ASSTHO		
86	C-86	283 + 572	M1	0.00	1.50	GM	A-2-4 (0)	47.50	NP
87	C-87	286 +072	M1	0.00	1.50	GM	A-1-b (0)	48.40	NP
88	C-88	288 + 572	M1	0.00	1.50	SC	A-4 (0)	30.60	8.71
89	C-89	291 +072	M1	0.00	1.50	GM	A-1-b (0)	35.40	NP
90	C-90	293 + 572	M1	0.00	1.50	SM	A-4 (0)	43.50	3.61
91	C-91	296 +072	M1	0.00	1.50	SC	A-2-4 (0)	40.80	9.58
92	C-92	298 + 572	M1	0.00	1.50	SM	A-2-4 (0)	52.50	5.90
93	C-93	301 +072	M1	0.00	1.50	GM	A-1-b (0)	39.50	NP
94	C-94	303 + 572	M1	0.00	1.50	SC	A-2-4 (0)	43.60	8.58
95	C-95	306 +072	M1	0.00	1.50	SC	A-2-4 (0)	31.80	7.39
96	C-96	308 + 572	M1	0.00	1.50	GM	A-1-b (0)	71.00	NP
97	C-97	311 +072	M1	0.00	1.50	GC	A-2-4 (0)	69.70	7.65
98	C-98	313 + 572	M1	0.00	1.50	GM	A-4 (0)	30.00	2.65
99	C-99	316 +072	M1	0.00	1.50	GM	A-2-4 (0)	21.40	2.41
100	C-100	318 + 572	M1	0.00	1.50	SM	A-2-4 (0)	28.00	5.30
101	C-101	321 +072	M1	0.00	1.50	SM	A-2-4 (0)	32.40	3.99
102	C-102	323 + 572	M1	0.00	1.50	SM	A-2-4 (0)	30.50	5.14
103	C-103	326 +072	M1	0.00	1.50	SM	A-2-4 (0)	36.20	3.89
104	C-104	328 + 572	M1	0.00	1.50	GM	A-1-b (0)	50.40	NP
105	C-105	331 +072	M1	0.00	1.50	ML	A-7-6 (0)	16.40	15.92
106	C-106	333 + 572	M1	0.00	1.50	SM	A-1-b (0)	46.80	NP
107	C-107	336 +072	M1	0.00	1.50	SM	A-2-4 (0)	45.20	3.07
108	C-108	338 + 572	M1	0.00	1.50	ML	A-2-4 (0)	18.80	4.33
109	C-109	341 +072	M1	0.00	1.50	GM	A-2-4 (0)	48.00	
110	C-110	341 + 970	M1	0.00	1.50	GM	A-2-4 (0)	38.80	NP

Elaboración Propia en base a Ensayos Laboratorio (Progresivas referidas a la situaci. Agosto 2020.

MIGUEL DAZ VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PA VIMENTOS

> TRAFICO

Según el Estudio de Tráfico, en esta zona actualmente tiene un IMD variable a lo largo del tramo. Teniendo en consideración el Manual de Diseño de Vías No Pavimentadas de Bajo Volumen de Tráfico del Ministerio de Transportes y Comunicaciones, en donde especifican tipos de tráficos dependiendo la vía.

CUADRO N° 08: INFORMACION DEL ESTUDIO DE TRAFICO

TRAMO	INICIO	FINAL	CBR 95 %	IMD 2018	IMD 2032	ESALs 2032
ı	71 + 072	94 + 840	45.40	176	303	4.792E+05
Ш	98 + 840	143 + 500	38.60	290	729	3.743E+05
III	143 + 500	178+010	37.20	417	962	2.712E+05
IV	178+010	242 + 390	36.20	569	1,375	6.466E+05
V	242 + 390	252+600	38.50	107	266	1.137E+05
VI	252+600	299+780	38.50	107	266	1.137E+05
VII	299+780	319+570	44.90	391	650	1.063E+06
VIII	319+570	337+600	34.50	681	1,059	1.327E+06
IX	337+600	342+859	37.70	338	597	1.708E+06

Elaboración Propia en base a Estudio de Tráfico, Agosto 2020.

> CLIMA

El clima y específicamente la temperatura es un factor importante para definir el tipo de asfalto a usarse tanto en mezclas asfálticas como en emulsiones, el factor a tenerse en cuenta es la Temperatura Media Anual, para la zona de estudio la Temperatura media es 19.50°C, según el Cuadro N°10.

CUADRO N° 09 TEMPERATURA MEDIA ANUAL

24°C a mas	24°C – 15°C	15°C – 5°C	MENOS DE 5° C
40 – 50 o		85 – 100	Asfalto
60 – 70 o	60 - 70		
modificado		120 - 150	modificado

Fuente: SENAMHI.

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUFLOS Y PAVIMENTOS JOSE FERNANDO LUNA HUAMAN INGENERO CIVIL Reg. CIP N° 32374 JEFE DE ESTUDIO

> APLICACIÓN DE ESTABILIZACIÓN DE SUELOS.

Según el Manual de Diseño de Vías No Pavimentadas de Bajo Volumen de Tráfico del Ministerio de Transportes y Comunicaciones, indica las condiciones para la aplicación de estabilización de suelos y los tipos:

CUADRO N° 10
Guía Referencial para la Selección del Tipo de Estabilizador

				i Tipo de Estabil	
CLASE DE SUELO	TIPO DE ESTABILIZADOR RECOMENDADO		RESTRICCION EN LL Y IP DEL SUELO	RESTRICCION EN EL PORCENTAJE QUE PASA LA MALLA 200	OBSERVACIONES
(1) Asfalt		Asfalto			
SW o SP	(2)	Cemento Portland			
	(3)	Cal-Cemento-Cenizas volantes	IP no excede de 25		
	(1)	Asfalto	IP no excede de 10		
SP - SM o	(2)	Cemento Portland	IP no excede de 30		
SP - PC	(3)	Cal	IP no menor de 12		
	(4)	Cal-Cemento-Cenizas volantes	IP no excede de 25		
SM o	(1)	Asfalto	IP no excede de 10	No debe exceder el 30% en peso	
SC o	(2)	Cemento Portland	(b)		
SM - SC	(3)	Cal	IP no menor de 12		
	(4)	Cal-Cemento-Cenizas volantes	IP no excede de 25		
	(1)	Asfalto			Solamente material bien graduado
GW o GP	(2)	Cemento Portland			El material deberá contener cuando menos 45 % en peso de material que pasa la Malla N° 4
	(3)	Cal-Cemento-Cenizas volantes	IP no excede de 25		
GW – GM o	(1)	Asfalto	IP no excede de 10		Solamente material bien graduado
GP – GM o	(2)	Cemento Portland	IP no excede de 30		El material deberá contener cuando menos 45 % en peso de material que pasa la Malla N° 4
GW – GC o GP - GC	(3)	Cal	IP no menor de 12		
	(4)	Cal-Cemento-Cenizas volantes	IP no excede de 25		
GM o	(1)	Asfalto	IP no excede de 10	No debe exceder el 30% en peso	Solamente material bien graduado
GC o	(2)	Cemento Portland	(b)		El material deberá contener cuando menos 45 % en peso de material que pasa la Malla N° 4
GM - GC	(3)	Cal	IP no menor de 12		
	(4)	Cal-Cemento-Cenizas volantes	IP no excede de 25		
CH o CL o	(1)	Cemento Portland	LL no menor de 40 IP no menor de 20		Suelos orgánicos y fuertemente
3 MH o ML o OH o OL o		Cal	IP no menor de 12		ácidos contenidos en esta área no son susceptibles a la estabilización por métodos ordinarios
IP = ĺn					Fuente: US Army Corps of Engineers
	SW - SM O SP - SM O SP - SM O SP - SM O SP - PC SM O SC O SM - SC GW O GP GW - GM O GP - GM O GP - GC GM O GC O GM - GC CH O CH O OH O OH O OH O OH O OH O OH	SUELO SW o SP (2) (3) (1) SW - SM o SP - SM o SW - SC o SP - PC (3) (4) (4) SM o (2) (3) (4) (4) (1) SM o (2) (3) (4) (1) (4) (1) (4) (1) (6) (6) (7) (8) (9) (1) (1) (1) (2) (3) (4) (1) (3) (4) (1) (4) (1) (5) (6) (7) (8) (9) (9) (1) (1) (1) (2) (3) (4) (1) (4) (1) (5) (6) (7) (8) (9) (1) (1) (1) (2) (3) (4) (4) (1) (4) (5) (6) (7) (7) (8) (9) (1) (1) (1) (1) (2) (3) (4) (4) (1) (4) (5) (6) (7) (7) (8) (9) (9) (1) (1) (1) (1) (2) (3) (4) (4) (1) (1) (1) (2) (3) (4) (4) (1) (1) (1) (2) (3) (4) (4) (1) (1) (1) (2) (3) (4) (4) (1) (1) (1) (2) (3) (4) (4) (1) (4) (1) (1) (1) (2) (3) (4) (4) (4) (5) (6) (7) (7) (8) (9) (9) (9) (1) (1) (1) (1) (1	SUELO RECOMENDADO	SW o SP	CLASE DE SUELO

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP N°159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENERO CIVIL Rag. CIP N° 32374 JEFE DE ESTUDIO

CUADRO Nº 11

Guía Complementaria Referencial para la Selección del Tipo de Estabilizador

Guia Complementaria Referencial para la Seleccion del Tipo de Estabilizador					
TIPO DE ESTABILIZADOR RECOMENDADO	NORMAS TECNICAS	SUELO (1)	DOSIFICACION (2)	CURADO (APERTURA AL TRANSITO)	OBSERVACIONES
Cemento	EG-CBT-2008 Sección 3068 ASTM C150 AASHTO M85	A-1,A-2,A-3,A-4,A-5,A-6 y A-7 LL < 40 % IP \leq 18 % CMO ⁽²⁾ < 1.00 % Sulfatos (SO ₄ ²)<0.2 % Abrasión < 50 % Durabilidad SO ₄ Ca ⁽⁴⁾ - AF \leq 10 % - AG \leq 12 % Durabilidad SO ₄ Mg - AF \leq 15 % - AG \leq 18 %	2 -12 %	7 días	Diseño de mezcla de acuerdo a recomendaciones de la PCA (Portland Cement Association)
Emulsión	ASTM D2397 O AASHTO M208	A-1, A-2 y A-3 Pasante malla N°200 ≤ 10 % IP ≤ 8 % Equivalente de arena ≥ 40 % $CMO^{(2)} < 1.00 \%$ Sulfatos $(SOa^2) < 0.6 \%$ Abrasión < 50 % Durabilidad SO ₄ Ca ⁽⁴⁾ - AF ≤ 10 % - AG ≤ 12 % Durabilidad SO ₄ Mg - AF ≤ 15 % - AG ≤ 18 %	4 – 8 %	Mínimo 24 horas	Cantidad de aplicación a ser definida de acuerdo a resultados del ensayo Marshall modificado o Illinois
Cal	EG-CBT-2008 Sección 3078 AASHTO M216 ASTM C977	A-2-6, A-2-7, A-6 y A-7 10 % \geq IP \leq 50 % CMO ⁽²⁾ < 3.00 % Sulfatos (SO ₄ ²) < 0.2 % Abrasión < 50 %	2 – 8 %	Mínimo 72 horas	Para IP > 50 %, se puede aplicar cal en dos etapas Diseño de mezcla de acuerdo a la Norma ASTM D 6276
Cloruro de Calcio	ASTM D96 ASTM D345 ASTM E449 MTC E 1109	A-1, A-2, y A-3 IP ≤ 15 % CMO ⁽²⁾ < 3.00 % Sulfatos (SO ₄ ²) < 0.2 % Abrasión < 50 %	1 a 3 % en peso del suelo seco	24 horas	
Cloruro de Sodio	EG-CBT-2008 Sección 309B ASTM E534 MTC E 1109	A-2-4, A-2-5, A-2-6 y A-27 8 % ≥ IP ≤ 15 % CMO ⁽²⁾ < 3.00 % Abrasión < 50 %	50 – 80 kg/cm ³	07 días	La cantidad de sal depende de los resultados (dosificación) y tramo de prueba
Cloruro de Magnesio	MTC E 1109	A-1, A-2 y A-3 IP ≤ 15 % CMO ⁽²⁾ < 3.00 % Ph; mínimo 5 Abrasión < 50 %	50 – 80 kg/cm ³	48 horas	La cantidad de sal depende de los resultados de laboratorio (dosificación) y tramo de prueba
Enzimas	EG-CBT-2008 Sección 308B MTC E 1109	A-2-4, A-2-5, A-2-6 y A-2-7 $6 \% \ge P \le 15 \%$ 4.5 < Ph < 8.5 $CMO^{(2)}No debe contener$ Abrasión < 50 % $6 < N^{\circ} 200$: 10-35 %	1L/30-33 m ³	De acuerdo a Especificaciones del fabricante	
Aceites sulfonados		Aplicable en suelos con partículas finas limosas o arcillosas, con LL bajo, arcillas y limos muy plásticos CMO ⁽²⁾ < 1.0 % Abrasión < 50 %		De acuerdo a Especificaciones del fabricante	

Fuente: Estudios Especiales del TMC

Idios Especiales uel Tinio
Espesor de tratamiento por capas de 6 a 8"
Espesor de tratamiento por capas de 6 a 8"
Tamaño máximo: 2", debe carecer de restos vegetales
Los suelos naturales, materiales de bancos de préstamo o mezcla de ambos que sean objeto de estabilización, deben estar definidos en el Expediente Técnico

Los suelos naturales, materiales de baricos de prestanto o mezcia de ambos que sean objeto de estabilizadori, de contenido de materia orgánica

Los daños o dosificaciones deben de indicar: formula de trabajo, tipo de suelo, cantidad de estabilizador, volumen de agua, valor del CBR o resistencia a compresión simple o resultados Marshall Modificado o Illinois, según corresponda al tipo de estabilizador aplicado (3)

Para altitudes mayores a 3000 m.s.n.m Después de finalizado el proceso de compactación.

Mign MIGUEL DIAZ VA SQUEZ

INGENIERO CIVIL Reg. CIP N° 32374 JEFE DE ESTUDIO

INGENIERO GEOLOGO
Reg. CIP Nº 159883
ESPECIALISTA EN GEOLOGIA
SUELOS Y PAVIMENTOS
Los materiales que conformarán la emulsión deberán cumplir lo indicado en el Cuadro N°10.

> MÓDULO RESILENTE

El módulo de Resiliencia es MR es una medida de la rigidez del suelo de subrasante, el cual para su cálculo se empleará la ecuación, que correlaciona con el CBR, recomendada por el MEPDG (Mechanistic Empirical Pavement Design Guide)

$$Mr(psi) = 2555 \cdot CBR^{0.64}$$

A continuación, el cálculo de módulo resilencia para diferentes tipos de CBR:

CUADRO N° 12

Módulo Resilente obtenido con CBR

CBR % SUBRASANTE	MODULO RESILENTE SUBRASANTE (M _R) (psi)	MODULO RESILENTE SUBRASANTE (M _R) (MPa)
10	11,153.00	76.90
15	14,457.00	99.68
20	17,380.00	119.83
25	20,048.00	138.23
30	22,529.00	155.33
36.20	25,408.00	175.23
37.20	25,855.00	178.31
38.50	26,429.00	182.27
38.60	26,473.00	182.57
45.40	29,370.00	202.55
50.00	31,241.00	215.40

Elaboración propia, en base a la ecuación de correlación CBR – Mr, recomendada por el MEPDG (Mechanistic Empirical Pavement Design Guide)

Para nuestro caso tenemos los siguientes tramos:

CUADRO Nº 13

	COADRO N 13						
N°	INICIO	FINAL	CBR 95 %	SUBRASANTE	Mr (psi)		
II	94 + 840	143 + 500	38.60	EXTRAORDINARIA	26,473.22		
III.1	143 + 500	177 + 694	37.20	EXTRAORDINARIA	25,854.63		
IV.1	178 + 010	241+900	36.20	EXTRAORDINARIA	25,407.64		
V	242 + 390	252 + 600	38.50	EXTRAORDINARIA	26,429.31		

Elaboración propia.

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS JOSE FERNANDO LUNA HUAMAN INGENERO CIVIL Rag. CIP N° 22314 JEFE BE E STUDIO

> CONFIABILIDAD

La confiabilidad es la probabilidad de que una sección del pavimento diseñada mediante el método indicado se comporte satisfactoriamente durante el período de diseño bajo las condiciones de tráfico determinadas. Según el Manual de Diseño de Vías No Pavimentadas de Bajo Volumen de Tráfico del Ministerio de Transportes y Comunicaciones indica valores recomendados que se muestran en el siguiente cuadro:

CUADRO Nº 14

Valores recomendados de Nivel de Confiabilidad para una sola etapa de diseño (10 o 20 años) según rango de Trafico

TIPO DE CAMINOS	TRAFICO	EJES EQUI ACUMU		NIVEL DE CONFIABILIDAD (R)
	T _{PO}	75,000	150,000	65 %
Caminos de	T _{P1}	150,001	300,000	70 %
Bajo Volumen de Transito	T _{P2}	300,001	500,000	75 %
	T _{P3}	500,001	750,000	80 %
	T _{P4}	750,001	1'000,000	80 %
	T _{P5}	1'000,001	1'500,000	85 %
	T _{P6}	1'500,001	3'000,000	85 %
	T _{P7}	3'000,001	5'000,000	85 %
	T _{P8}	5'000,001	7'500,000	90 %
	T _{P9}	7'500,001	10'000,000	90 %
Restos de Caminos	T _{P10}	10'000,001	12'500,000	90 %
	T _{P11}	12'500,001	15'000,000	90 %
	T _{P12}	15'000,001	20'000,000	95 %
	T _{P13}	20'000,001	25'000,000	95 %
	T _{P14}	25'000,001	30'000,000	95 %
	T _{P15}	>3	30'000,001	95 %

Elaboración Propia en base a datos de la Guía AASHTO '93

Para nuestro caso para caminos de bajo volumen de transito, con un trafico tipo T_{NP0} y un trafico pesado de T_{P3} el nivel de confiabilidad es 80 %.

MIGUEL DIAZ VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

OSE FERNANDO LUNA HUAMAN INGENIERO CIVIL Reg. CIP N° 32374

> DESVIACIÓN STANDARD NORMAL

El coeficiente estadístico de desviación estándar Normal Zr, representa el valor de la confiabilidad seleccionada, para un conjunto de datos en una distribución normal. Según el Manual de Diseño de Vías No Pavimentadas de Bajo Volumen de Tráfico del Ministerio de Transportes y Comunicaciones, se tienen valores como se muestra en el Cuadro a continuación:

CUADRO N° 15

Coeficiente Estadístico de la Desviación Estándar Normal (Zr) para una sola etapa de diseño (10 o 20 años)

según el Nivel de Confiabilidad Seleccionado y el Rango de Trafico TIPO DE **EJES EQUIVALENTES DESVIACION ESTÁNDAR TRAFICO CAMINOS ACUMULADOS** NORMAL (Zr) T_{PO} 75,000 150,000 -0.385150,001 300,000 -0.524 T_{P1} Caminos de Bajo Volumen T_{P2} 300,001 500,000 -0.674de Transito T_{P3} 500,001 750,000 -0.842 750,001 1'000,000 -0.842 T_{P4} 1'000,001 1'500,000 -1.036 T_{P5} 3'000,000 T_{P6} 1'500,001 -1.036 3'000,001 T_{P7} 5'000,000 -1.036 5'000,001 7'500,000 -1.282 T_{P8} 10'000,000 7'500,001 -1.282 T_{P9} Restos de 10'000,001 12'500,000 -1.282 T_{P10} **Caminos** 12'500.001 15'000.000 -1.282 T_{P11} 15'000,001 20'000,000 -1.645 T_{P12} 20'000,001 25'000,000 -1.645 T_{P13} T_{P14} 25'000,001 30'000,000 -1.645 > 30'000,001 -1.645 T_{P15}

Elaboración Propia en base a datos de la Guía AASHTO '93.

Para nuestro caso tenemos un valor de (-0.674 y -0.524), para una sola etapa de diseño y periodo de 10 o 20 años.

MIGUEL DIAZ VA SQUEZ INGENIERO GEOLOGO Reg. CIP № 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL Reg. CIP N° 32374

> DESVIACIÓN STANDARD TOTAL

La desviación estándar combinada (So), es un valor que toma en cuenta la variabilidad esperada de la predicción del tránsito y de los otros factores que afectan el comportamiento del pavimento. La guía AASHTO recomienda adoptar para los pavimentos flexibles o similares valores comprendidos entre 0.40 y 0.50, se adoptará el valor de $S_0 = 0.45$.

> INDICE DE SERVICIABILIDAD

El índice de serviciabilidad presente es la comodidad de circulación ofrecida al usuario. Su valor varía de 0 a 5. Un valor de 5 refleja mejor comodidad teórica (difícil de alcanzar) y por el contrario un valor 0 refleja el peor. Cuando la condición de la vía decrece por deterioro, el PSI también decrece.

SERVICIABILIDAD INICIAL (PSI i) Y FINAL (PSI f)

La serviciabilidad inicial Pi es la condición de una vía recientemente construida. A continuación, se indican los índices de servicio inicial para los diferentes tipos de tráfico.

CUADRO N° 16
Indicé de Serviciabilidad Inicial (Pi)

según Rango de Trafico					
TIPO DE CAMINOS	TRAFICO		IVALENTES ULADOS	INDICE DE SERVICIABILIDAD INICIAL (Pi)	
	T _{P1}	150,001	300,000	3.80	
Caminos de bajo volumen	T _{P2}	300,001	500,000	3.80	
de transito	T _{P3}	500,001	750,000	3.80	
	T _{P4}	750,001	1'000,000	3.80	
	T _{P5}	1'000,001	1'500,000	4.00	
	T _{P6}	1'500,001	3'000,000	4.00	
	T _{P7}	3'000,001	5'000,000	4.00	
	T _{P8}	5'000,001	7'500,000	4.00	
Restos de	T _{P9}	7'500,001	10'000,000	4.00	
Caminos	T _{P10}	10'000,001	12'500,000	4.00	
	T _{P11}	12'500,001	15'000,000	4.00	
	T _{P12}	15'000,001	20'000,000	4.20	
	T _{P13}	20'000,001	25'000,000	4.20	
	T _{P14}	25'000,001	30'000,000	4.20	
	T _{P15}	>	30'000,001	4.20	

Elaboración Propia en base a datos de la Guía AASHTO '93

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP № 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL Rep. CIP N° 32374

CUADRO N° 17

Indicé de Serviciabilidad Final (Pt) según Rango de Trafico

TIPO DE CAMINOS	TRAFICO		IVALENTES ULADOS	INDICE DE SERVICIABILIDAD FINAL (Pf)
	T _{P1}	150,001	300,000	2.00
Caminos de bajo volumen	T _{P2}	300,001	500,000	2.00
de transito	T _{P3}	500,001	750,000	2.00
	T _{P4}	750,001	1'000,000	2.00
	T _{P5}	1'000,001	1'500,000	2.50
	T _{P6}	1'500,001	3'000,000	2.50
	T _{P7}	3'000,001	5'000,000	2.50
	T _{P8}	5'000,001	7'500,000	2.50
	T _{P9}	7'500,001	10'000,000	2.50
Restos de Caminos	T _{P10}	10'000,001	12'500,000	2.50
	T _{P11}	12'500,001	15'000,000	2.50
	T _{P12}	15'000,001	20'000,000	3.00
	T _{P13}	20'000,001	25'000,000	3.00
	T _{P14}	25'000,001	30'000,000	3.00
Eleberraión Durnia en h	T _{P15}	> Cuía AACHTO (02	30'000,001	4.20

Elaboración Propia en base a datos de la Guía AASHTO '93

Para nuestro caso con un tipo de tráfico T_{P3} tenemos:

PSI i = 3.80 PSI

PSI f = 2.00 PSI

MIGUEL DAZ VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 153883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENERO CIVIL Reg. CIP N° 32374

VARIACION DE SERVICIABILIDAD (△ PSI)

 Δ PSI = 1.80

NUMERO ESTRUCTURAL

Los datos obtenidos y procesados se aplican a la ecuación de diseño AASHTO y se obtienen el Numero Estructural, que representa el espesor total del pavimento colocar y debe ser trasformado al espesor efectivo de cada una de las capas que lo constituirán, o sea de la capa de rodadura, de base y sub-bases, mediante el uso de los coeficientes estructurales, esta conversión se obtiene aplicando la siguiente ecuación:

SN = a1 D1 + m2 a2 D2 + m3 a3 D3

Donde:

ai = Coeficientes estructurales o de capa

mi = Coeficientes de drenaje

Di = Espesor de capa

Los valores de los coeficientes estructurales para las capas del pavimento son los indicados en el Manual de Diseño de Vías No Pavimentadas de Bajo Volumen de Tráfico del Ministerio de Transportes y Comunicaciones indica, en base a la guía de AASHTO 1993

Aplicando el Cuadro N° 18 para nuestro caso tenemos:

- a1 = 0.000 para la capa de Micropavimento
- a1 = 0.000 para la capa de Slurry Seal
- a2 = 0.115 / cm, para base granular tratada con asfalto
- a2 = 0.061 / cm, para base granular tratada con cemento

MIGUEL DIA ZVA SQUEZ INGENIERO GEOLOGO Reg. CIP № 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL . Reg. CIP N° 32374

CUADRO Nº 18

Coeficientes Estructurales de las Capas del Pavimento ai

	COEFICI	VALOR	
COMPONENTE DEL PAVIMENTO	ENTE	COEFICIENTE ESTRUCTURAL a _I (cm)	OBSERVACION
CAPA SUPERFICIAL			
Carpeta Asfáltica en Caliente, modulo 2,965 MPa (430,000 PSI) a 20°C (68 °F)	a ₁	0.170 / cm	Capa Superficial recomendada para todos los tipos de Trafico.
Carpeta Asfáltica en Frio, mezcla asfáltica con emulsión	a ₁	0.125 /cm	Capa Superficial recomendada para Trafico ≤ 1'000,000 EE
Micropavimento 25 mm	a ₁	0.130 / cm	Capa Superficial recomendada para Trafico ≤ 1'000,000 EE
Tratamiento Superficial Bicapa	a ₁	0.250 (*)	Capa Superficial recomendada para Trafico ≤ 500,000 EE No aplica en tramos con pendiente mayor a 8%; y en vías con curvas pronunciadas, curvas de volteo, curvas y contracurvas, y en tramos que obliguen el frenado de vehículos
Lechada asfáltica (Slurry Seal) de 12mm	a ₁	0.150 (*)	Capa Superficial recomendada para Trafico ≤ 500,000 EE No aplica en tramos con pendiente mayor a 8% y en tramos que obliguen al frenado de vehículos
(*) Valor Global (no se considera el espe	sor)		
BASE			
Base Granular CBR 80 % compactada al 100 % de la MDS	a ₂	0.052 / cm	Capa de Base recomendada para Trafico ≤ 5′000,000 EE
Base Granular CBR 100 % compactada al 100 % de la MDS	a ₂	0.054 / cm	Capa de Base recomendada para Trafico ≤ 5′000,000 EE
Base Granular tratada con Asfalto (Estabilidad Marshall = 1500 lb)	a _{2a}	0.115 / cm	Capa de Base recomendada para todos los tipos de Trafico.
Base Granular tratada con Cemento (resistencia a la compresión 7 días=35 kg/cm2	a _{2b}	0.070 / cm	Capa de Base recomendada para todos los tipos de Trafico.
Base Granular tratada con Cal (resistencia a la compresión 7 días=12 kg/cm2	a _{2c}	0.080 / cm	Capa de Base recomendada para todos los tipos de Trafico.
SUBBASE			
SubBase Granular CBR 40 % compactada al 100 % de la MDS	a ₃	0.047 / cm	Capa de SubBase recomendada para Trafico ≤ 15'000,000 EE
SubBase Granular CBR 60 % compactada al 100 % de la MDS	a ₃	0.050 / cm	Capa de SubBase recomendada para Trafico ≤ 15´000,000 EE

Elaboración Propia, en base a datos de la Guía AASHTO '93

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL Reg. CIP N° 3214 JEFE DE ESTUDIO

> COEFICIENTE CALIDAD DE DRENAJE.

Este valor indica la calidad de drenaje con el tiempo que tarde el agua en ser evacuada.

CUADRO Nº 19

Calidad del Drenaje

CALIDAD DEL DRENAJE	TIEMPO EN QUE TARDA EL AGUA EN SER EVACUADA
Excelente	2 horas
Bueno	1 día
Mediano	1 semana
Malo	1 mes
Muy malo	El agua no drena

Fuente:Guía de Diseño de Estructuras de Pavimentos AASHTO -1993

CUADRO N° 20

Valores recomendados del Coeficiente

De Drenaje mi para Bases y Subbases granulares no tratadas en Pavimentos Flexibles

CALIDAD DEL DRENAJE	P=% DEL TIEMPO EN QUE EL PAVIMENTO ESTA EXPUESTO A NIVELES DE HUMEDAD CERCANO A LA SATURACION								
	MENOR QUE 1%	1% - 5%	5% - 25%	MAYOR QUE 25%					
Excelente	1.40 -1.35	1.35 – 1.30	1.30 – 1.20	1.20					
Bueno	1.35 – 1.25	1.25 – 1.15	1.15 – 1.00	1.00					
Regular	1.25 – 1.15	1.15 – 1.05	1.00 – 0.80	0.80					
Pobre	1.15 – 1.05	1.05 – 0.80	0.80 - 0.60	0.60					
Muy pobre	1.05 – 0.95	0.95 – 0.75	0.75 – 0.40	0.40					

Fuente: Guía de Diseño de Estructuras de Pavimentos AASHTO -1993

Utilizando los Cuadros N° 20 y 21, podemos concluir:

m1 = 1.00

m2 = 1.00

m3 = 1.00

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENERO CIVIL Reg. CIP N° 32374

En función a los parámetros requeridos por AASHTO y especificados en los cuadros anteriores, se han determinado los diferentes Números Estructurales requeridos, para cada rango de tráfico expresado en ejes equivalentes (EE) y rango de tipo de suelos, según se presenta en gráfico y cuadro siguiente:

NÚMERO ESTRUCTURAL PARA PAVIMENTOS FLEXIBLES (*)

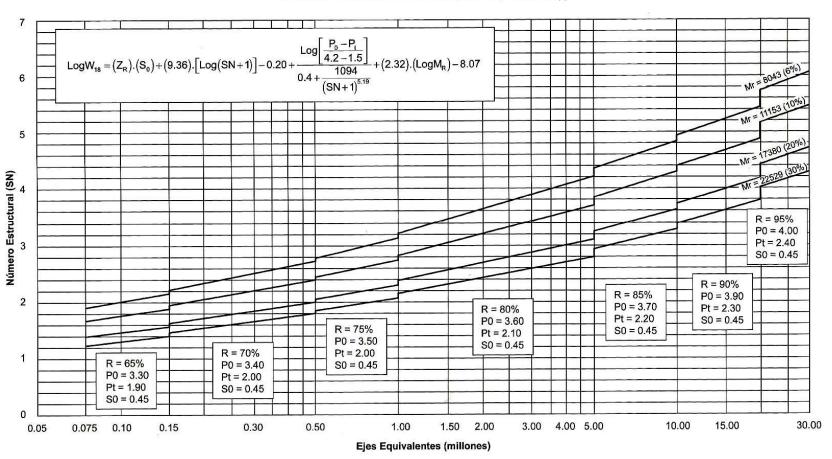


FIGURA N°02

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL Reg. CIP N° 32374 JEFE DE ESTUDIO

CUADRO N° 21

CATALOGO DE NÚMEROS ESTRUCTURALES (SN) REQUERIDOS POR TIPO DE TRAFICO Y DE SUB RASANTE Mortero Asfaltico + Base Granular + Subbase Granular

TIPO SUB RASANTE	Inadecuada	Pobre	Regula	Buena	Muy Buena	Excelente CBR ≥ 30 %	
CLASE DE TRANSITO	CBR < 3 % (*)	3 % ≤ CBR < 6 % (*)	6 % ≤ CBR < 10 %	10 % ≤ CBR < 20 %	20 % ≤ CBR < 30 %		
T _P O			2.146	2.005	1,641	1,404	
75,000 < Rep. EE ≤ 150,000			2.140	2.005	1,041	1.404	
Tp1			2.500	2.240	1.839	1.664	
150,000 < Rep. EE ≤ 300,000			2.500	2.240	1.039	1.004	
Tp2			2.725	2 201	2.005	1.420	
300,000 < Rep. EE ≤ 500,000			2.735	2.381	2.005	1.420	

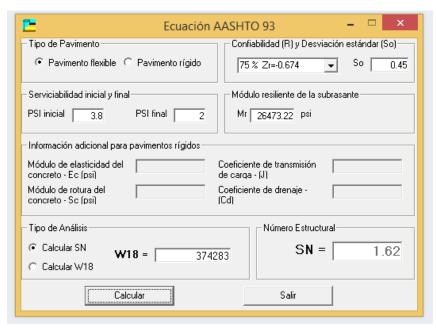
^(*) Previa a la colocación de la estructura del pavimento, se requiere Estabilización de suelos, que sera materia de Estudio Especial - Con el Suelo Estabilizado la estructura del pavimento a colocar, Corresponderá a la de un Suelo Regular (CBR≥6% a CBR<10%)

CATALOGO DE NÚMEROS ESTRUCTURALES (SN) REQUERIDOS POR TIPO DE TRAFICO Y DE SUB RASANTE Tratamiento Superficial Bicapa + Base Granular + Subbase Granular

TIPO SUB RASANTE	Inadecuada CBR < 3 % (*)	Pobre 3 % ≤ CBR < 6 % (*)	Regula	Buena	Muy Buena	Excelente	
CLASE DE TRANSITO			6 % ≤ CBR < 10 %	10 % ≤ CBR < 20 %	20 % ≤ CBR < 30 %	CBR ≥ 30 %	
T _P 0			2.146	2.005	1.641	1.404	
75,000 < Rep. EE ≤ 150,000			2.140	2.005	1.041	1.404	
Te1			2.500	2.240	1.839	1 004	
150,000 < Rep. EE ≤ 300,000			2,500	2.240	1,039	1.664	
Tp2			0.725	2.381	2.005	1,420	
300,000 < Rep. EE ≤ 500,000		THE RESIDENCE OF THE PARTY OF T	2.735	2.301	2.005	1.420	

(*) Previa a la colocación de la estructura del pavimento, se requiere Estabilización de suelos, que sera materia de Estudio Especial - Con el Suelo Estabilizado la estructura del pavimento a colocar, Corresponderá a la de un Suelo Regular (CBR≥6% a CBR<10%)

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS


JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL Reg. CIP N° 32374 JEFE BE ESTUDIO

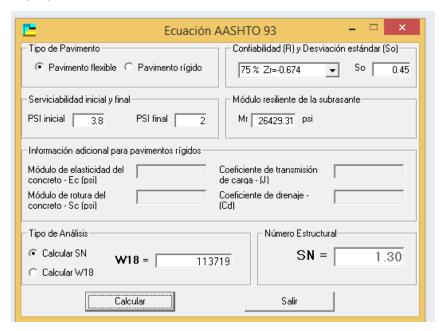
7. SN REQUERIDO

Los siguientes cuadros muestran los reportes obtenidos por el software AASHTO 93:

Tramo II:

Tramo III.1:

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS


JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL Reg CIP N° 32314 JEFE DE ESTUDIO

Tramo IV.1:

Ecuación A	AASHTO 93 – 🗆 ×							
Tipo de Pavimento	Confiabilidad (R) y Desviación estándar (So)							
Pavimento flexible Pavimento rígido	75 % Zr=-0.674 So 0.45							
Serviciabilidad inicial y final	Módulo resiliente de la subrasante							
PSI inicial 3.8 PSI final 2	Mr 25407.64 psi							
Información adicional para pavimentos rígidos								
	Coeficiente de transmisión de carga - [J]							
	Coeficiente de drenaje - (Cd)							
Tipo de Análisis	Número Estructural							
© Calcular SN W18 = 6466	SN = 1.81							
C Calcular W18								
Calcular	Salir							

Tramo V:

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159833 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMA INGENIERO CIVIL Reg. CIP N° 32374 JEFE BE ESTUDIO

7.1- Determinación de la estructura del Pavimento

El diseño se efectuó para 10 años, aplicando los criterios cuadros y figuras anteriores, tenemos entonces.

CUADRO N° 22 RESUMEN PARAMETROS DE DISEÑO

N	INICIO	FINAL	CBR 95 %	Mr (psi)	CONFIABILIDAD (%)	DESVIACION	DESVIACION NORMAL	DIFERENCIA PSI	COEFICIENTES ESTRUCTURA	COEFICIENTES DRENAJE		
Ш	94 + 840	143 + 500	38.60	26,473.22								
III.1	143 + 500	177 + 694	37.20	25,854.63	75	75	-0.674	0.45	1.80	a1=0.000	m1=1.00 m2=1.00	
IV.1	178 + 010	241+900	36.20	25,407.64	70	-0.524	-0.524	-0.524	0.45	1.80	a2=0.115 0.061	m3=1.00
V	242 + 390	252 + 600	38.50	26,429.31								

Elaboración propia.

En el siguiente cuadro se muestra el resumen del SN requerido con los parámetros utilizados:

CUADRO N°23: SN requerido en los tramos

TRAMO		ESALs (año 2032)	CBR DISEÑO (%)	R(%)	Zr	So	Pi	Pt	Mr	SN (Req.)
II	Sihuas - Dv. Tayabamba	374,283	38.6	75	-0.674	0.45	3.8	2.0	26,473.22	1.62
III.1	Dv. Tayabamba - Huacrachuco	271,237	37.2	75	-0.674	0.45	3.8	2.0	25,854.63	1.54
IV.1	Huacrachuco - San Pedro de Chonta	646,617	36.2	75	-0.674	0.45	3.8	2.0	25,407.64	1.81
٧	San Pedro de Chonta - Ajenjo	113,719	38.5	70	-0.524	0.45	3.8	2.0	26,429.31	1.30

Elaboración propia.

8. ALTERNATIVAS DE DISEÑO

8.1 ALTERNATIVA 01. Suelo estabilizado con emulsión y recubrimiento asfaltico

Colocación de Base granular tratada con emulsión asfáltica (3.3% en peso) (Estabilidad Marshall = 1500 lb) de e=15cm excepto en el Tramo IV.1 donde e =17 cm (EG-2013. Sección 301.E).

Imprimación con emulsión catiónica CSS-1h diluido con agua (EG-2013: Sección 416). Colocación de micropavimento e=1.2 cm (EG-2013: Sección 425).

Para los materiales que se usarán para las mezclas asfálticas en frio deberán cumplir con los requisitos establecidos en el Capítulo N°4 (pavimento asfaltico) de las Especificaciones Técnicas Generales para la construcción de carreteras (EG-Vigentes) respecto a agregados y los tipos de cemento asfaltico.

MIGUEL DIAZ VÁSQUEZ INGENIERO GEOLÓGO Reg. CIP № 159883 ESPECIALISTA EN GEOLÓGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL RAG. CIP N° 32374 JEFE DE ESTUDIO

CUADRO N°24: Resultados de Ensayos de Laboratorio en Cantera (para validar uso como Base estabilizada con Emulsión Asfáltica)

Parámetro	EG-2013. 301-E	Calicata 1	Calicata 2	Calicata 3	Resultado				
	Cantera Km 102+550 (Progresiva actual 101+770)								
% pasa malla No. 200	<10%	4.5%	4.2%	4.6%	OK				
Materia orgánica	<1%	No presenta	No presenta	No presenta	OK				
IP	<= 9%	NP	NP	NP	OK				
TM agregado grueso	2"	10"	10"	10"	Requiere				
					zarandeo				
Desgaste abrasión	<50%	25%	24%	27%	OK				
	Cantera Km152+	125 (Progresiva	actual 151+200))					
% pasa malla No. 200	<10%	2.9%	3.8%	4.1%	OK				
Materia orgánica	<1%	No presenta	No presenta	No presenta	OK				
IP	<= 9%	NP	NP	NP	OK				
TM agregado grueso	2"	10"	10"	10"	Requiere				
					zarandeo				
Desgaste abrasión	<50%	22%	21%	24%	OK				
	Cantera Km 187+	330 (Progresiva	actual 186+425)					
% pasa malla No. 200	<10%	19.3%	18.4%	19.3%	Requiere				
					zarandeo				
Materia orgánica	<1%	No presenta	No presenta	No presenta	OK				
IP	<= 9%	3.9%	3.7%	3.2%	OK				
TM agregado grueso	2"	6"	6"	6"	Requiere				
					zarandeo				
Desgaste abrasión	<50%	30%	28%	29%	OK				
	Cantera Km 20)1+175 (Progres	siva 202+608)						
% pasa malla No. 200	<10%	22.1%	26.1%	22.7%	Requiere				
					zarandeo				
Materia orgánica	<1%	No presenta	No presenta	No presenta	OK				
IP	<= 9%	3.5%	3.5%	3.3%	OK				
TM agregado grueso	2"	6"	6"	6"	Requiere				
					zarandeo				
Desgaste abrasión	<50%	31%	30%	32%	OK				

Elaboración Propia en base a resultados Ensayos, Anexo 8.

MIGUEL DIAZ VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 153883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENERO CIVIL RAG CIP N° 32374 JEFE BE ESTUDIO

En el Cuadro anterior puede apreciarse que el material de cuatro canteras puede ser utilizado para preparar la base estabilizada con emulsión, requiriendo en todos los casos un zarandeo para eliminar el agregado grueso mayor de 2" y en dos canteras se requiere eliminar parte del material por debajo de la malla No. 200.

CUADRO N°25: Ensayos de Mezcla de Suelo Estabilizado con Asfalto (Ensayo MTC E-504)

Resultados	Requerimientos EG-		% Emulsión	Asfáltica								
	2013. 301-E	1.67%	3.33%	5.0%	6.7%							
Cantera Km 102+550 (Progresiva actual 101+770)												
Estabilidad (kg)	>230 kg	752	841	673	699							
Pérdida Estabilidad	< 50%	53.8%	31.0%	30.2%	30.7%							
C	Cantera Km 152+125 (Progresiva actual 151+200)											
Estabilidad (kg)	>230 kg	730	863	648	680							
Pérdida Estabilidad	< 50%	50.7%	34.9%	28.5%	28.4%							
C	antera Km 187+330	(Progresiva ad	tual 186+425	5)								
Estabilidad(kg)	>230 kg	713	832	695	697							
Pérdida Estabilidad	< 50%	49.6%	33.6%	31.1%	28.2%							
Cantera Km 201+175 (Progresiva actual 202+608)												
Estabilidad (kg)	>230 kg	713	832	695	697							
Pérdida Estabilidad	< 50%	49.6%	33.6%	31.1%	28.2%							

Elaboración Propia en base a resultados Ensayos, Anexo 10.

Del Cuadro anterior, basado en resultados de Ensayos Marshall (ver Anexo 10) se aprecia que puede tomarse de manera conservadora que el porcentaje de emulsión a utilizar sea de 3.3% en peso.

En relación al material para la superficie de cobertura del pavimento se empleará **MICROPAVIMENTO de 12 mm** para lo cual se ha efectuado un diseño que se incluye en el Anexo 10 utilizando arena triturada de la Cantera ubicada en el Km 152+125 (progresiva actual 151+200) y se verifica que se cumpla con lo señalado en el EG-2013, Sección 425 y se tiene la siguiente dosificación referencial:

Arena triturada Cantera Km 152+125 con 1% de	100%
cemento	
Cemento Portand	1%
Agua	6.51%
Emulsión Rotura Rápida CRS-2p con polímeros	18.61%

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP № 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENERO CIPIL Reg. CIP N° 32374 JEFE DE ESTUDIO

Para la elaboración del micropavimento se utilizará arena triturada de la cantera ubicada en el Km 152+125 (los resultados de la granulometría de la mezcla triturada se muestran en el Anexo 10), la cual cumple las especificaciones señaladas en la Sección 425 de la EG-2013 de acuerdo al Tipo M-II:

CUADRO N°26: Validación Gradación Agregado para uso en Micropavimento

	% pas	a en peso				
Malla ASTM No.	Tipo M-II (Secc 425, EG-2013)	Arena Triturada Cantera Km 152+000 + 1% cemento				
3/8"	100	100	OK			
4	85-95	89.6	OK			
8	62-80	69.6	OK			
16	45-65	52.9	OK			
30	30-50	39.3	OK			
50	18-35	31	OK			
100	10-24	18.3	OK			
200	5-15	12.4	OK			

Elaboración Propia en base a ensayos elaborados por Consultor y la Tabla 425-01 de la EG-2013.

8.2 ALTERNATIVA 02. Material granular estabilizado con cemento y recubrimiento asfaltico

Colocación de Base de material granular estabilizada con Cemento Portland con 2.4% en peso (resistencia a la compresión 7 días = 22Kg/cm2) de e= 27 cm, excepto en el Tramo IV.1 donde e= 30 cm y en el Tramo V donde e= 22 cm (EG-2013: Sección 301.A), con imprimación con emulsión catiónica CSS-1h diluido con agua (EG-2013: Sección 416) y recubrimiento con Slurry Seal, e=1.2 cm (Norma ISSA A105 Especificaciones para Slurry Seal), excepto en el Tramo IV.1 donde se colocará Tratamiento Superficial Simple.

Para la verificación de la calidad de los agregados de las canteras seleccionadas se muestra un resumen con los resultados que son similares a los de la Alternativa 1:

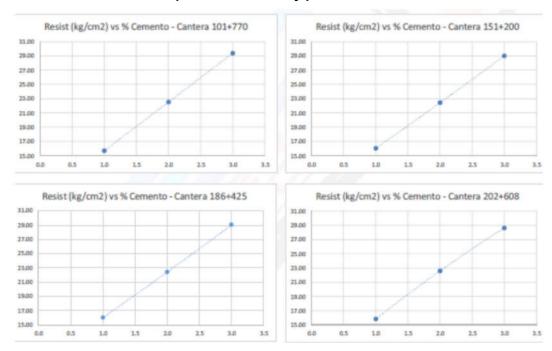
MIGUEL DIA ZVA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

DSE FERNANDO LUNA HUAMA INGENIERO CIVIL Reg. CIP N° 32374

CUADRO N°27: Resultados de Ensayos de Laboratorio en Cantera (para validar uso como Base estabilizada con Cemento Portland)

Parámetro	EG-2013. 301-A	Calicata 1	Calicata 2	Calicata 3	Resultado							
	Cantera Km 102	2+550 (Progres	siva actual 101	+770)								
LL	<40%	No presenta	No presenta	No presenta	OK							
IP	<18%	NP	NP	NP	OK							
TM agregado grueso	2"	10"	10"	10"	Zarandeo							
Desgaste abrasión	<50%	25%	24%	27%	OK							
	Cantera Km 152+125 (Progresiva actual 151+200)											
LL	<40%	No presenta	No presenta	No presenta	OK							
IP	<18%	NP	NP	NP	OK							
TM agregado grueso	2"	10"	10"	10"	Zarandeo							
Desgaste abrasión	<50%	22%	21%	24%	OK							
	Cantera Km 187	7+330 (Progres	siva actual 186	+425)								
LL	<40%	21.8	21.3	22.0	OK							
IP	<18%	3.9%	3.7%	3.2%	OK							
TM agregado grueso	2"	6"	6"	6"	Zarandeo							
Desgaste abrasión	<50%	30%	28%	29%	OK							
	Cantera Km 201	1+020 (Progres	siva actual 202	+608)								
LL	<40%	23.9	25.2	25.5	OK							
IP	<18%	3.5%	3.5%	3.3%	OK							
TM agregado grueso	2"	6"	6"	6"	Zarandeo							
Desgaste abrasión	<50%	31%	30%	32%	OK							

Elaboración Propia en base a resultados Ensayos, Anexo 8.


En el Anexo 10 se incluyen los resultados de ensayos de probetas con mezclas de suelo – cemento para diversas proporciones y cada cantera; donde se verifica que para cumplir que la resistencia a la compresión a los 7 días (curado) sea mayor a 1.8 MPa (como lo señala la Sección 301-A de la EG-2013) se alcanza con una proporción de 2.4 % de cemento en peso. A continuación se muestran los gráficos resumen:

MIGUEL DIAZ VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAI INGENIERO CIVIL . Reg. CIP N° 32374

CUADRO N°28: Resultados de ensayos a la compresión para diversos porcentajes de aporte de cemento y para cada Cantera

Elaboración Propia en base a resultados Ensayos, Anexo 8.

Para la superficie de rodadura (excepto para el Tramo IV.1) se colocará un slurry seal de 1.2 cm para lo cual se utilizará la cantera Km 152+125. De esta fuente se triturará arena y se mezclará con 1% de cemento respecto a la cual se realizó el análisis granulométrico respectivo (ver Anexo 10) y cuyo resultado se ajusta a la gradación señalada en la IISA A-105:

CUADRO N°29: Validación Gradación Agregado para uso en Slurry Seal

	% pas	a en peso			
Malla ASTM No.	De acuerdo a	Arena Triturada Cantera Km 152+000 + 1%			
		cemento			
3/8"	100	100	OK		
4	90-100	89.6	OK		
8	65-90	69.6	OK		
16	45-70	52.9	OK		
30	30-50	39.3	OK		
50	18-30	31	OK		
100	10-21	18.3	OK		
200	5-15	12.4	OK		

Elaboración Propia en base a ensayos elaborados por Consultor y la

ISSA A-105.

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL Reg. CIP N° 32374 JEFE BE E STUDIO

En base a este resultado se aproxima que el diseño del slurry seal (1.2 cm) a colocar tendría la siguiente dosificación referencial:

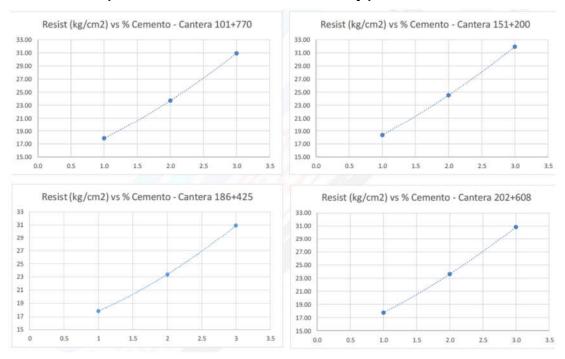
Arena triturada con 1% cemento: 100%
Agua 6.5%
Emulsión catiónica de Rotura Lenta, CSS-1h. 13%

Para el Tramo IV.1 se colocará Tratamiento Superficial Simple que se describe en la Alternativa 3.

8.3 ALTERNATIVA 03. Material granular estabilizado con cemento + aditivo químico (aceite sulfonado) y recubrimiento asfaltico

Colocación de Base de material granular estabilizada con Cemento Portland con 2.2% en peso (resistencia a la compresión 7 días = 22Kg/cm2) de e= 25 cm (Tramos III.1 y IV.1), de e= 27 cm (Tramo II) y de e = 22 cm (Tramo V) más aditivo aceite sulfonado (0.04 lt/m3) (EG-2013: Sección 301.A), con imprimación con emulsión catiónica CSS-1h diluido con agua (EG-2013: Sección 416) y recubrimiento con Tratamiento Superficial Simple, Grava Tamaño Max. 1/2" (EG-2013: Sección 418), excepto en el Tramo IV.1 donde se colocará Micro Pavimento Doble de 25 mm.

Se utilizan las mismas canteras descritas en la Alternativa 2 cumpliendo las mismas especificaciones: Km 102+550, Km 152+125, Km 187+330 y Km 201+175.


En el Anexo 10 se incluyen los resultados de ensayos de probetas con mezclas de suelo – cemento y aditivo sulfonado para diversas proporciones y cada cantera; donde se verifica que para cumplir que la resistencia a la compresión a los 7 días (curado) sea mayor a 1.8 MPa (como lo señala la Sección 301-A de la EG-2013) se alcanza con una proporción de 2.2% de cemento en peso, añadiendo el aditivo sulfonado (0.04 lt/m3). A continuación se muestran los gráficos resumen:

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAYMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL . Reg. CIP N° 32374

CUADRO N°30: Resultados de ensayos a la compresión para diversos porcentajes de aporte de cemento + aditivo sulfonado y para cada Cantera

Elaboración Propia en base a resultados Ensayos, Anexo 8.

Para la superficie de rodadura se colocará un tratamiento simple superficial de 1.5 cm (TM 3/8"), excepto en el Tramo IV.1, para lo cual se utilizará las cantera de los Km 102+550 y del Km 152+125. De ambas se realizaron los análisis granulométricos respectivos (ver Anexo 10) y cuyos resultados se ajusta a la gradación señalada en la Sección 418 (EG-2013):

CUADRO N°31: Validación Gradación Agregado Tratamiento Simple (3/8")

	9	√ pasa en peso)	
Malla ASTM	De acuerdo a	Cantera Km	Cantera Km.	
No.	Sección 418	102+550	152+125(Prog	
140.	(EG-2013) –	(Prog Actual	Actual Km	
	Huso 8	Km. 101+770)	151+200)	
1/2"	100	100	100	
3/8"	85-100	88.3	86.7	
4	10-30	6.1	6.6	
8	0-10	1.8	1.9	
16	0-5	1	0.8	
30			0.6	

Elaboración Propia en base a ensayos elaborados por Consultor y la Sección 418 (EG-2013).

De acuerdo a la EG-2013, las cantidades aproximadas de uso son:

Asfalto CRS-2p

0.86 l/m2

Agregado

0.006 m3/m2

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS JOSE FERNANDO LUNA HUAMAN INGENERO CINI, Ring CIP N° 32374

RESULTADOS DE LOS CALCULOS DE DISEÑO

Cuadro Na 32: ALTERNATIVA 1

					SUEI	LO GRAI	NULAR	ESTAB	ILIZAD	O CON E	MULSIC	ON ASF	ALTICA
	TRAMO ESALs (año 2030)	CBR DISEÑO (%)	SN (Req.)	a1 (1/cm)	a2 (1/cm)	m2	a3 (1/cm)	m3	D1 (cm)	D2 (cm)	D3 (cm)	SN (Diseño)	
П	Sihuas - Dv. Tayabamba	374,283	38.6	1.62	0.00	0.115	1.0	0.00	1.0	1.2	15.0	0.0	1.90
III.1	Dv. Tayabamba - Huacrachuco	271,237	37.2	1.54	0.00	0.115	1.0	0.00	1.0	1.2	15.0	0.0	1.90
IV.1	Huacrachuco - San Pedro de Chonta	646,617	36.2	1.81	0.00	0.115	1.0	0.00	1.0	1.2	17.0	0.0	1.90
٧	San Pedro de Chonta - Ajenjo	113,719	38.5	1.30	0.00	0.115	1.0	0.00	1.0	1.2	15.0	0.0	1.90

Cuadro Na 33: ALTERNATIVA 2

			CBR			SUELO	O GRAI	NULAR E	STAB	LIZADO	CON C	EMENTO)
	TRAMO	ESALs (año 2030)	DISEÑO (%)	SN (Req.)	a1 (1/cm)	a2 (1/cm)	m2	a3 (1/cm)	m3	D1 (cm)	D2 (cm)	D3 (cm)	SN (Diseño)
II	Sihuas - Dv. Tayabamba	374,283	38.6	1.62	0.00	0.061	1.0	0.00	1.0	1.2	27.0	0.0	1.78
III.1	Dv. Tayabamba - Huacrachuco	271,237	37.2	1.54	0.00	0.061	1.0	0.00	1.0	1.2	27.0	0.0	1.78
IV.1	Huacrachuco - San Pedro de Chonta	646,617	36.2	1.81	0.00	0.061	1.0	0.00	1.0	1.5	30.0	0.0	1.85
V	San Pedro de Chonta - Ajenjo	113,719	38.5	1.30	0.00	0.061	1.0	0.00	1.0	1.2	22.0	0.0	1.52

Cuadro Na 34: ALTERNATIVA 3

		ESALs	CBR SN		SUELO GRANULAR ESTABILIZADO CON CEMENTO + ACEITE SULFONADO								
	TRAMO	(año 2030)	DISEÑO (%)	(Req.)	a1 (1/cm)	a2 (1/cm)	m2	a3 (1/cm)	m3	D1 (cm)	D2 (cm)	D3 (cm)	SN (Diseño)
II	Sihuas - Dv. Tayabamba	374,283	38.6	1.62	0.00	0.063	1.0	0.00	1.0	1.5	27.0	0.0	1.81
III.1	Dv. Tayabamba - Huacrachuco	271,237	37.2	1.54	0.00	0.063	1.0	0.00	1.0	1.5	25.0	0.0	1.81
IV.1	Huacrachuco - San Pedro de Chonta	646,617	36.2	1.81	0.00	0.063	1.0	0.00	1.0	2.5	25.0	0.0	1.81
V	San Pedro de Chonta - Ajenjo	113,719	38.5	1.30	0.00	0.063	1.0	0.00	1.0	1.5	22.0	0.0	1.57

POLITICAS DE MANTENIMIENTO

La ecuación que maximiza la diferencia a favor del beneficio del usuario, frente al gasto vial por inversión y conservación vial, constituye el nivel óptimo deseado, en la ingeniería de la vialidad pública.

Desde el punto de vista, la conservación de patrimonio vial del estado requiere de un sistema de procesamientos técnicos especializados, ajustada por el permanente monitoreo de la condición vial para todos los tramos que forman parte del programa de conservación que normalmente tiene una parte rutinaria de ejecución anual y otra parte de ejecución periódica

MIGUEL DIAZ VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 153983 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSÉ FERNANDO LUNA HUAMA INGENIERO CIVIL Reg. CIP N° 32314 JEFE DE ESTUDIO

que debidamente coordinada en el conjunto, se debe lograra optimizar el costo para maximizar el beneficio del usuario.

La conservación puede definirse como el conjunto de actividades de obras de ingeniería vial, que requiere realizarse de manera preventiva para evitar el deterioro prematuro de los elementos que conforman la vía. Por esta causa, el monitoreo del camino en forma visual, es la actividad de rutina básica de la conservación vial; y da su nombre de "conservación rutinaria" al conjunto de actividades de corrección inmediata de defectos. La segunda parte de "conservación periódica", está conformada por obras que acumulan aspectos que no pueden ser de reparación inmediata, pero que, si son visibles y en base a la experiencia y demanda de tráfico, son programables para ser realizadas por tramos viales, cuya prioridad se certifica en el campo en función de los registros del camino.

Lo señalado en los párrafos anteriores está claramente establecido en el Manual de Carreteras: Sección MANTENIMIENTO O CONSERVACION VIAL, donde se especifica las Políticas de mantenimiento según niveles de Servicialidad para las alternativas propuestas.

Empleando similares diseños efectuados en los tramos de inversión como se ha descrito anteriormente se han efectuado los cálculos para las intervenciones de conservación periódica en los tramos siguientes:

Cuadro Na 35: CONSERVACION PERIODICA INICIAL

					SUELO GRANULAR ESTABILIZADO CON EMULSION ASFALTICA								
	TRAMO	ESALs (año 4)	CBR DISEÑO (%)	SN (Req.)	a1 (1/cm)	a2 (1/cm)	m2	a3 (1/cm)	m3	D1 (cm)	D2 (cm)	D3 (cm)	SN (Diseño)
1.1	Dv. Pomabamba - Sihuas	168,328	45.4	1.41	0.00	0.115	1.0	0.00	1.0	2.5	15.0	0.0	1.725
VI	Ajenjo – San Antonio	52,640	38.5	1.18	0.00	0.115	1.0	0.00	1.0	1.2	15.0	0.0	1.725
VII	San Antonio - Uchiza	371,800	38.5	1.67	0.00	0.115	1.0	0.00	1.0	2.0	15.0	0.0	1.73
VIII	Uchiza – Santa Lucia	464,400	34.5	1.85	0.00	0.115	1.0	0.00	1.0	2.5	15.0	0.0	2.05
IX	Santa Lucia – Emp PE 5N	596,000	37.7	1.95	0.00	0.115	1.0	0.00	1.0	2.5	15.0	0.0	2.05

Para la conservación periódica inicial se plantea la colocación de base granular tratada con emulsión asfáltica (3.3% en peso) (Estabilidad Marshall = 1500 lb) de e=15cm (EG-2013. Sección 301.E). Se utilizará la cantera Km 261+100 y para la estimación de la mezcla se emplea la misma utilizada para los tramos en inversión.

Imprimación con emulsión catiónica CSS-1h diluido con aqua (EG-2013: Sección 416).

Colocación de micropavimento e=1.2 cm (EG-2013: Sección 425) en el Tramo VI, micropavimento doble e = 2.5cm en los Tramos VIII y IX, tratamiento superficial bicapa en los

Tramos I y VII. Se utilizará la cantera Km 305+490.

MIGUEL DIA ZVA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMA INGENERO CIVIL Reg. CIP N° 32374

CONCLUSIONES Y RECOMENDACIONES

 Durante el recorrido de la carretera se tiene una variación del soporte del suelo CBR mínima, se ha utilizado para el diseño el valor de:

N°	INICIO	FINAL	CBR 95 %	SUBRASANTE	Mr (psi)
II	94 + 840	143 + 500	38.60	EXTRAORDINARIA	26,473.22
III.1	143 + 500	177 + 694	37.20	EXTRAORDINARIA	25,854.63
IV.1	178 + 010	242 + 153	36.20	EXTRAORDINARIA	25,407.64
V	242 + 390	252 + 600	38.50	EXTRAORDINARIA	26,429.31

- Para el diseño del pavimento se utilizó el método de AASHTO 93
- El tráfico adoptado es según el Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos, aprobado con RD 010-2014-MTC/14 y el estudio de tráfico, adoptándose el valor de W18 igual de 5x10⁴ EAL, con un IMD de diseño de 3.75E+05 hasta 4.23E+05
- Los valores de diseño serán con una confiabilidad "R" de 75% y 70% con una desviación estándar normal (Zr) de -0.674. La desviación estándar total adoptada es de 0.45.
- La serviciabilidad inicial es 3.80 y la final 2.00, obteniéndose un índice de 1.8. El diseño es para un periodo de diseño de 10 años.
- Se han calculado tres tipos de diseño para los tramos de inversión:
 - a. Alternativa 1:

Carpeta		Tramos								
Carpeta	II	III.1	IV.1	V						
Recubrimiento	Micropavimento 1.2 cm	Micropavimento 1.2 cm	Micropavimento 1.2 cm	Micropavimento 1.2 cm						
Solución Básica	Suelo estabiliza		asfáltica (3.3 % en p n 301.E).	eso) (EG-2013:						
Base	15cm	15cm	17cm	15cm						

b. Alternativa 2:

Carnete	Tramos				
Carpeta	=	III.1	IV.1	V	
Recubrimiento	Slurry Seal e=1.2cm	Slurry Seal e=1.2 cm	Tratamiento Superficial Simple ½"	Slurry Seal e=1.2 cm	
Solución Básica	Suelo estabilizado con Cemento Portland (2.4 % en peso) (PCA, EG- 2013: Sección 301.A).				
Base	27cm	27cm	30cm	22cm	

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA E N GEOLOGIA

JOSE FERNANDO LUNA HUAMA INGENIERO CIVIL . Reg. CIP N° 32374

c. Alternativa 3:

Cornete	Tramos			
Carpeta	II	III.1	IV.1	V
Recubrimiento	Tratamiento Superficial Simple ½"	Tratamiento Superficial Simple ½"	Micropavimento Doble 2.5 cm	Tratamiento Superficial Simple ½"
Solución Básica	Suelo estabilizado con Cemento Portland (2.2 % en peso) más aditiv aceite sulfonado (0.04 lt/m3) (PCA, EG-2013: Sección 301.A).			
Base	27cm	25cm	25cm	22cm

Para los tramos donde se aplique conservación periódica los diseños son los siguientes:

Comoto	Tramos				
Carpeta	I	VI	VII	VIII	IX
Recubrimiento	Tratamiento Superficial Bicapa	Micropavimento 1.2 cm	Tratamiento Superficial Bicapa	Micropavimento doble 2.5 cm	Micropavimento doble 2.5 cm
Solución Básica	Suelo estabilizado con emulsión asfáltica (3.3 % en peso) (EG-2013: Sección 301.E).				
Base	15cm	15cm	15cm	15cm	15cm

- La base será estabilizada con emulsiones catiónicas de rotura lenta (CSS) pueden ser usadas para la estabilización de gravas naturales no trituradas y suelos arenosos. La estabilización de suelos o agregados mediante la incorporación de emulsiones asfálticas, incrementa la capacidad portante, la firmeza y la resistencia al desplazamiento por la acción del clima (agua).
- La buena calidad y permanencia de la obra deviene de efectuar un control permanente de los parámetros de calidad de los materiales antes y durante la ejecución de la obra (proceso constructivo). Por tanto, se deberá aplicar en forma estricta y adecuada las Especificaciones Técnicas y procedimientos utilizados en Ingeniería para la construcción de los accesos, fundamentalmente tomando en consideración la variabilidad horizontal y vertical que presentan las mismas por su génesis, así como el control permanente de las características físico mecánicas de los agregados a conformar.
- Las dosificaciones de uso de los distintos materiales en pavimentos para los tramos de inversión son las siguientes:

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSÉ FERNANDO LUNA HUAMAI INGENERO CIVIL Reg. CIP N° 32374 JEFE DE ESTUDIO

Actividad	T:	Dosificación	Aplicación en:		
Actividad	Tipo	Dosificación	Alt 1	Alt 2	Alt 3
	Con Emulsión asfáltica (EG-2013: Sección 301.E)	Emulsión asfáltica CSS-1h: 3.33 % en peso (23.4 gl/m3).	Tramos II, III.1, IV.1 y V		
Con Cemento Portland (PCA, EG-2013: Sección 301.A). Con Cemento Portland mas aditivo (PCA, EG-2013: Sección 301.A)	, ,	Cemento Portland: 2.4 % en peso (1.5 bs/m3).		Tramos II, III.1, IV.1 y V	
	Cemento Portland: 2.2 % en peso (1.4 bs/m3). Aditivo aceite sulfonado: 0.04 lt/m3.			Tramos II, III.1, IV.1 y V	
Imprimacion	Emulsión catiónica (EG-2013: Sección 416)	Emulsión catiónica CSS-1h diluido con agua	Tramos II, III.1, IV.1 y V	Tramos II, III.1, IV.1 y V	Tramos II, III.1, IV.1 y V
	Micropavimento simple e=1.2 cm (EG- 2013: Sección 425).	Arena triturada: 100%, Cemento Portland: 1%, Agua: 6.51%, Emulsión asfáltica de rotura rápida con polimeros CRS-2p: 18.61%	Tramos II, III.1, IV.1 y V		
Recubrimientos	Micropavimento doble e=2.5 cm (EG- 2013: Sección 425).	Arena triturada: 100%, Cemento Portland: 1%, Agua: 6.51%, Emulsión asfáltica de rotura rápida con polimeros CRS-2p: 18.61%			Tramo IV.1
	Slurry Seal, e=1.2cm (Norma ISSA A105 Especificaciones para Slurry Seal).	Arena triturada: 100%, Agua: 6.5%, Emulsión cationica de rotura lenta CSS- 1h: 13%		Tramos II, III.1 y V	
		Emulsión asfáltica de rotura rápida con polimeros CRS-2p: 0.861 l/m2, Agregado: 0.006 m3/m2.		Tramo IV.1	Tramos II, III.1 y V

 Las dosificaciones de uso de los distintos materiales en pavimentos para el caso de Conservación Periódica Inicial son las siguientes:

Actividad	Tipo	Dosificación	Aplicación en:	
Estabilizacion	· ·	Emulsión asfáltica CSS-1h: 3.33 % en peso (23,4 gl/m3).	Tramos I.1, VI, VII.1, VII.3, VIII.1.	
Imprimacion	,	Emulsión catiónica CSS-1h diluido con agua	Tramos I.1, VI, VII.1, VII.3, VIII.1.	
	Micropavimento simple e=1.2 cm (EG-	Arena triturada: 100%, Cemento Portland: 1%, Agua: 6.51%, Emulsión asfáltica de rotura rápida con polimeros CRS-2p: 18.61%		
Recubrimientos	Micropavimento doble e=2.5 cm (EG-2013: Sección 425).	Arena triturada: 100%, Cemento Portland: 1%, Agua: 6.51%, Emulsión asfáltica de rotura rápida con polimeros CRS-2p: 18.61%	Tramo VIII.1.	
	Tratamiento Superficial Doble espesor e=2.0 cm, (EG-2013: Sección 418), emulsión asfáltica de rotura rapida con polimeros CRS-2.	Emulsión astáltica de rotura rápida con polimeros CRS-2p: 1.3561/m2. Agregado:		

- Para garantizar la permanencia del pavimento, se recomienda que el pavimento tenga un mantenimiento rutinario, preventivo y correctivo durante el periodo de duración previsto.
- El agua actúa como solvente, por lo que se recomienda, en cualquier caso, controlar mediante las obras de drenaje superficial más apropiada.
- Las recomendaciones señaladas en el presente Estudio son concordantes con las Especificaciones Técnicas Generales para Construcción de Carreteras del MTC (EG –

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL Reg. CIP N° 32374 JEFF BE ESTUDIO

2013) y con el Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos, aprobado con RD 010-2014-MTC/14,

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP N°159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

DSE FERNANDO LUNA HUAMAI INGENIERO CIVIL Reg. CIP N° 32374 JEFE DE ESTUDIO

ANEXOS

"ESTUDIO DE PREINVERSIÓN A NIVEL DE PERFIL DEL PROYECTO DE MEJORAMIENTO DE LA CARRETERA DV. POMABAMBA - SIHUAS - HUACRACHUCO - SAN PEDRO DE CHONTA - UCHIZA - EMP. PE-5N POR NIVELES DE SERVICIO"

GEOLOGIA, SUELOS Y PAVIMENTOS

DISEÑO DE PAVIMENTOSINVERSION – Alternativa 1

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMA INGENIERO CIVIL RAGI CIP N° 32314 JEFE BE ESTUDIO

DISEÑO DE PAVIMENTOS METODO AASHTO 1,993 (PAVIMENTOS FLEXIBLES)

PERFIL:

MEJORAMIENTO DE LA CARRETERA DV. POMABAMBA – SIHUAS – HUACRACHUCO – SAN PEDRO - DE CHONTA – UCHIZA - EMP. PE 5N POR NIVELES DE SERVICIO

Alternativa	1	Recubrimiento asfaltico + Materia	l granular estabilizada con emulsion
Tramo:	II	Sihuas	Dv. Tayabamba

ECUACION 01

$$\log_{10}(W_{18}) = Z_R \times S_0 + 9.36 \times \log_{10}(SN+1) - 0.2 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.4 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$$

W18	3.74E+05	Aplicaciones de Ejes Simples de Carga Equivalente
ZR	-0.674	Desviación standard Normal
SO	0.45	Desviación standard para Pavimentos Flexibles
PT	2.00	Serviciabilidad final
PI	3.80	Serviciabilidad inicial
ΔPSI	1.80	Variación Total del Indice de Serviciabilidad
MR	26473.22	Módulo de Resilencia efectivo del Material de Fundación
SN	1.62	Número Estructural

ECUACION 02

\neg	$r \sim c$
114	

271.00		
SN	1.62	Número Estructural
a1	0.000	Coeficiente estructural de MICROPAVIMENTO SIMPLE
a2	0.115	Coeficiente estructural de BASE ESTABILIZADA CON EMULSIÓN ASFALTICA
a3	0.047	Coeficiente estructural de SUBBASE
d1	1.20	Espesor MICROPAVIMENTO (cm)
d2	15.00	Espesor BASE ESTABILIZADA CON EMULSIÓN ASFALTICA (cm)
d3	0.00	Espesor SUBBASE (cm)
m2	1.00	Coeficiente de drenaje de BASE
m3	1.00	Coeficiente de drenaje de SUBBASE
	1.73	
VALIDACION	OK	

MIGUEL DIAZ VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 153883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

IOSE FERNANDO LUNA HUAMA INGENIERO CIVIL Reg. CIP N° 32374 JEFE DE ESTUDIO Tramo : III Dv. Tayabamba Huacrachuco

ECUACION 01

$\log_{10}(W_{18}) = Z_R \times S_0 + 9.36 \times \log_{10}(SN+1) - 0.2 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.4 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$
--

DATOS

W18	2.71E+05	Aplicaciones de Ejes Simples de Carga Equivalente
ZR	-0.674	Desviación standard Normal
SO	0.45	Desviación standard para Pavimentos Flexibles
PT	2.00	Serviciabilidad final
PI	3.80	Serviciabilidad inicial
ΔPSI	1.80	Variación Total del Indice de Serviciabilidad
MR	25854.63	Módulo de Resilencia efectivo del Material de Fundación
SN	1.54	Número Estructural

ECUACION 02

DATOS

SN	1.54	Número Estructural
a1	0.000	Coeficiente estructural de MICROPAVIMENTO SIMPLE
a2	0.115	Coeficiente estructural de BASE ESTABILIZADA CON EMULSIÓN ASFALTICA
a3	0.047	Coeficiente estructural de SUBBASE
d1	1.20	Espesor MICROPAVIMENTO (cm)
d2	15.00	Espesor BASE ESTABILIZADA CON EMULSIÓN ASFALTICA (cm)
d3	0.00	Espesor SUBBASE (cm)
m2	1.00	Coeficiente de drenaje de BASE
m3	1.00	Coeficiente de drenaje de SUBBASE

1.73

VALIDACION OK

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAJ INGENIERO CIVIL Reg. CIP N° 32374 JEFE DE ESTUDIO Tramo : IV Huacrachuco San Pedro de Chonta

ECUACION 01

$$\log_{10}(W_{18}) = Z_R \times S_O + 9.36 \times \log_{10}(SN + 1) - 0.2 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.4 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$$

DATOS

W18	6.47E+05	Aplicaciones de Ejes Simples de Carga Equivalente
ZR	-0.842	Desviación standard Normal
SO	0.45	Desviación standard para Pavimentos Flexibles
PT	2.00	Serviciabilidad final
PI	3.80	Serviciabilidad inicial
ΔPSI	1.80	Variación Total del Indice de Serviciabilidad
MR	25407.64	Módulo de Resilencia efectivo del Material de Fundación
SN	1.81	Número Estructural

ECUACION 02

DATOS

SN	1.81	Número Estructural
a1	0.000	Coeficiente estructural de MICROPAVIMENTO SIMPLE
a2	0.115	Coeficiente estructural de BASE ESTABILIZADA CON EMULSIÓN ASFALTICA
a3	0.047	Coeficiente estructural de SUBBASE
d1	1.20	Espesor MICROPAVIMENTO
d2	17.00	Espesor BASE ESTABILIZADA CON EMULSIÓN ASFALTICA (cm)
d3	0.00	Espesor SUBBASE (cm)
m2	1.00	Coeficiente de drenaje de BASE
m3	1.00	Coeficiente de drenaje de SUBBASE
m3	1.00	Coeficiente de drenaje de SUBBASE

1.96

VALIDACION OK

MIGUEL DIA ZVA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

IOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL RAG. CIP N° 32374 JEFE BE ESTUDIO Tramo: V San Pedro de Chonta Ajenjo

ECUACION 01

$$\log_{10}(W_{18}) = Z_R \times S_0 + 9.36 \times \log_{10}(SN + 1) - 0.2 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.4 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$$

DATOS

W18	1.14E+05	Aplicaciones de Ejes Simples de Carga Equivalente
ZR	-0.674	Desviación standard Normal
SO	0.45	Desviación standard para Pavimentos Flexibles
PT	2.00	Serviciabilidad final
PI	3.80	Serviciabilidad inicial
ΔPSI	1.80	Variación Total del Indice de Serviciabilidad
MR	26429.31	Módulo de Resilencia efectivo del Material de Fundación
SN	1.30	Número Estructural

ECUACION 02

DATOS

SN	1.30	Número Estructural
a1	0.000	Coeficiente estructural de MICROPAVIMENTO SIMPLE
a2	0.115	Coeficiente estructural de BASE ESTABILIZADA CON EMULSIÓN ASFALTICA
a3	0.000	Coeficiente estructural de SUBBASE
d1	1.20	Espesor MICROPAVIMENTO (cm)
d2	15.00	Espesor BASE ESTABILIZADA CON EMULSIÓN ASFALTICA (cm)
d3	0.00	Espesor SUBBASE (cm)
m2	1.00	Coeficiente de drenaje de BASE
m3	1.00	Coeficiente de drenaje de SUBBASE
		•

1.73

VALIDACION OK

MIGUEL DIAZVA SQUEZ INGENIERO GEOLOGO Reg. CIP № 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

OSE FERNANDO LUNA HUAMAN INGENIERO CIVIL Reg. CIP N° 32374 JEFE BE ESTUDIO "ESTUDIO DE PREINVERSIÓN A NIVEL DE PERFIL DEL PROYECTO DE MEJORAMIENTO DE LA CARRETERA DV. POMABAMBA - SIHUAS - HUACRACHUCO - SAN PEDRO DE CHONTA - UCHIZA - EMP. PE-5N POR NIVELES DE SERVICIO"

GEOLOGIA, SUELOS Y PAVIMENTOS

DISEÑO DE PAVIMENTOS INVERSION – Alternativa 2

DISEÑO DE PAVIMENTOS METODO AASHTO 1,993 (PAVIMENTOS FLEXIBLES)

PERFIL:

MEJORAMIENTO DE LA CARRETERA DV. POMABAMBA – SIHUAS – HUACRACHUCO – SAN PEDRO - DE CHONTA – UCHIZA - EMP. PE 5N POR NIVELES DE SERVICIO

Alternativa	2	Recubrimiento asfaltico + Material granular estabilizada con CEMENTO
-------------	---	--

Tramo: 2 Sihuas Dv. Tayabamba

ECUACION 01

$$\log_{10}(W_{18}) = Z_R \times S_0 + 9.36 \times \log_{10}(SN+1) - 0.2 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.4 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$$

DATOS

W18	3.74E+05	Aplicaciones de Ejes Simples de Carga Equivalente
ZR	-0.674	Desviación standard Normal
SO	0.45	Desviación standard para Pavimentos Flexibles
PT	2.00	Serviciabilidad final
PI	3.80	Serviciabilidad inicial
ΔPSI	1.80	Variación Total del Indice de Serviciabilidad
MR	26473.22	Módulo de Resilencia efectivo del Material de Fundación
SN	1.62	Número Estructural

ECUACION 02

SN	1.62	Número Estructural
a1	0.000	Coeficiente estructural de SLURRY SEAL
a2	0.061	Coeficiente estructural de BASE ESTABILIZADA CON CEMENTO
a3	0.047	Coeficiente estructural de SUBBASE
d1	1.20	Espesor SLURRY SEAL (cm)
d2	27.00	Espesor BASE ESTABILIZADA CON CEMENTO (cm)
d3	0.00	Espesor SUBBASE (cm)
m2	1.00	Coeficiente de drenaje de BASE
m3	1.00	Coeficiente de drenaje de SUBBASE

1.65

VALIDACION OK

MIGUEL DIAZ VA SQUEZ INGENIERO GEOLOGO Reg. CIP № 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAJ INGENIERO CIVIL RAG. CIP N° 32374 JEFE DE ESTUDIO Tramo: 3 Dv. Tayabamba Huacrachuco

ECUACION 01

$\log_{10}(W_{18}) = Z_R \times S_O + 9.36 \times \log_{10}(SN + 1) - 0.2 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.4 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$
--

DATOS

W18	2.71E+05	Aplicaciones de Ejes Simples de Carga Equivalente
ZR	-0.674	Desviación standard Normal
SO	0.45	Desviación standard para Pavimentos Flexibles
PT	2.00	Serviciabilidad final
PI	3.80	Serviciabilidad inicial
ΔPSI	1.80	Variación Total del Indice de Serviciabilidad
MR	25854.63	Módulo de Resilencia efectivo del Material de Fundación
SN	1.54	Número Estructural

ECUACION 02

DATOS

SN	1.54	Número Estructural
a1	0.000	Coeficiente estructural de SLURRY SEAL
a2	0.061	Coeficiente estructural de BASE ESTABILIZADA CON CEMENTO
a3	0.047	Coeficiente estructural de SUBBASE
d1	1.20	Espesor SLURRY SEAL (cm)
d2	27.00	Espesor BASE ESTABILIZADA CON CEMENTO(cm)
d3	0.00	Espesor SUBBASE (cm)
m2	1.00	Coeficiente de drenaje de BASE
m3	1.00	Coeficiente de drenaje de SUBBASE

1.6362

VALIDACION OK

MIGUEL DIA ZVA SQUEZ INGENIERO GEOLOGO Reg. CIP № 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL RAG. CIP N° 32374 JEFE BE ESTUDIO Tramo: 4 Huacrachuco San Pedro de Chonta

ECUACION 01

$\log_{10}(W_{18}) = Z_R \times S_O + 9.36 \times \log_{10}(SN + 1) - 0.2 +$	$\frac{\log_{10}\left(\frac{\Delta PSI}{4.2-1.5}\right)}{0.4 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$
	(811 1 2)

DATOS

W18	6.47E+05	Aplicaciones de Ejes Simples de Carga Equivalente
ZR	-0.842	Desviación standard Normal
SO	0.45	Desviación standard para Pavimentos Flexibles
PT	2.00	Serviciabilidad final
PI	3.80	Serviciabilidad inicial
ΔPSI	1.80	Variación Total del Indice de Serviciabilidad
MR	25407.64	Módulo de Resilencia efectivo del Material de Fundación
SN	1.81	Número Estructural

ECUACION 02

DATOS

SN	1.81	Número Estructural
a1	0.000	Coeficiente estructural de TRATAMIENTO SUPERFICIAL SIMPLE
a2	0.061	Coeficiente estructural de BASE ESTABILIZADA CON CEMENTO
a3	0.047	Coeficiente estructural de SUBBASE
d1	1.50	Espesor TRATAMIENTO SUPERFICIAL SIMPLE TSS (cm)
d2	30.00	Espesor BASE ESTABILIZADA CON CEMENTO (cm)
d3	0.00	Espesor SUBBASE (cm)
m2	1.00	Coeficiente de drenaje de BASE
m3	1.00	Coeficiente de drenaje de SUBBASE

1.82

VALIDACION OK

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL Rag CIP N° 3214 JEFE BE ESTUDIO **Tramo:** 5 San Pedro de Chonta San Antonio

ECUACION 01

$\log_{10}(W_{18}) = Z_R \times S_0 + 9.36 \times \log_{10}(SN + 1) - 0.2 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.4 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$
--

DATOS

W18	1.14E+05	Aplicaciones de Ejes Simples de Carga Equivalente
ZR	-0.674	Desviación standard Normal
SO	0.45	Desviación standard para Pavimentos Flexibles
PT	2.00	Serviciabilidad final
PI	3.80	Serviciabilidad inicial
ΔPSI	1.80	Variación Total del Indice de Serviciabilidad
MR	26429.31	Módulo de Resilencia efectivo del Material de Fundación
SN	1.30	Número Estructural

ECUACION 02

DATOS

SN	1.30	Número Estructural
a1	0.000	Coeficiente estructural de SLURRY SEAL
a2	0.061	Coeficiente estructural de BASE ESTABILIZADA CON CEMENTO
a3	0.047	Coeficiente estructural de SUBBASE
d1	1.20	Espesor SLURRY SEAL (cm)
d2	22.00	Espesor BASE ESTABILIZADA CON CEMENTO (cm)
d3	0.00	Espesor SUBBASE (cm)
m2	1.00	Coeficiente de drenaje de BASE ESTABILIZADA CON CEMENTO
m3	1.00	Coeficiente de drenaje de SUBBASE

1.33

VALIDACION OK

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL Reg. CIP N° 32314 JEFE BE ESTUDIO "ESTUDIO DE PREINVERSIÓN A NIVEL DE PERFIL DEL PROYECTO DE MEJORAMIENTO DE LA CARRETERA DV. POMABAMBA - SIHUAS - HUACRACHUCO - SAN PEDRO DE CHONTA - UCHIZA - EMP. PE-5N POR NIVELES DE SERVICIO"

GEOLOGIA, SUELOS Y PAVIMENTOS

DISEÑO DE PAVIMENTOS INVERSION – Alternativa 3

DISEÑO DE PAVIMENTOS METODO AASHTO 1,993 (PAVIMENTOS FLEXIBLES)

PERFIL:

MEJORAMIENTO DE LA CARRETERA DV. POMABAMBA – SIHUAS – HUACRACHUCO – SAN PEDRO - DE CHONTA – UCHIZA - EMP. PE 5N POR NIVELES DE SERVICIO

Alternativa	3	Recubrimiento Asfaltico + material granular estabilizado con cemento + aceite sulfunado
-------------	---	---

Tramo : II Sihuas Dv. Tayabamba

ECUACION 01

$$\log_{10}(W_{18}) = Z_R \times S_0 + 9.36 \times \log_{10}(SN+1) - 0.2 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.4 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$$

DATOS

W18	3.74E+05	Aplicaciones de Ejes Simples de Carga Equivalente
ZR	-0.674	Desviación standard Normal
SO	0.45	Desviación standard para Pavimentos Flexibles
PT	2.00	Serviciabilidad final
PI	3.80	Serviciabilidad inicial
ΔPSI	1.80	Variación Total del Indice de Serviciabilidad
MR	26473.22	Módulo de Resilencia efectivo del Material de Fundación
SN	1.62	Número Estructural

ECUACION 02

DATO	วร
------	----

SN	1.62	Número Estructural
a1	0.000	Coeficiente estructural de TRATAMIENTO SUPERFICIAL SIMPLE
a2	0.063	Coeficiente estructural de BASE ESTABILIZADA
a3	0.047	Coeficiente estructural de SUBBASE
d1	1.50	Espesor TRATAMIENTO SUPERFICIAL SIMPLE (cm)
d2	27.00	Espesor BASE ESTABILIZADA CEMENTO + QUIMICO (cm)
d3	0.00	Espesor SUBBASE (cm)
m2	1.00	Coeficiente de drenaje de BASE
m3	1.00	Coeficiente de drenaje de SUBBASE

1.70

VALIDACION OK

MIGUEL DIAZ VA SQUEZ INGENIERO GEOLOGO Reg. CIP № 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

IOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL Reg. CIP N° 32374 JEFE BE ESTUDIO Tramo : III Dv. Tayabamba Huacrachuco

ECUACION 01

$$\log_{10}(W_{18}) = Z_R \times S_0 + 9.36 \times \log_{10}(SN+1) - 0.2 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.4 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$$

DATOS

W18	2.71E+05	Aplicaciones de Ejes Simples de Carga Equivalente
ZR	-0.674	Desviación standard Normal
SO	0.45	Desviación standard para Pavimentos Flexibles
PT	2.00	Serviciabilidad final
PI	3.80	Serviciabilidad inicial
ΔPSI	1.80	Variación Total del Indice de Serviciabilidad
MR	25854.63	Módulo de Resilencia efectivo del Material de Fundación
SN	1.54	Número Estructural

ECUACION 02

DATOS

SN	1.54	Número Estructural
a1	0.000	Coeficiente estructural de TRATAMIENTO SUPERFICIAL SIMPLE
a2	0.063	Coeficiente estructural de BASE ESTABILIZADA
a3	0.047	Coeficiente estructural de SUBBASE
d1	1.50	Espesor TRATAMIENTO SUPERFICIAL SIMPLE (cm)
d2	25.00	Espesor BASE ESTABILIZADA CEMENTO + QUIMICO (cm)
d3	0.00	Espesor SUBBASE (cm)
m2	1.00	Coeficiente de drenaje de BASE
m3	1.00	Coeficiente de drenaje de SUBBASE

1.57

VALIDACION OK

MIGUEL DIAZVA SQUEZ INGENIERO GEOLOGO Reg. CIP № 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

DSE FERNANDO LUNA HUAMAN INGENIERO CIVIL RAG. CIP N° 32374 JEFE BE ESTUDIO Tramo : IV Huacrachuco San Pedro de Chonta

ECUACION 01

$$\log_{10}(W_{18}) = Z_R \times S_O + 9.36 \times \log_{10}(SN + 1) - 0.2 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.4 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$$

DATOS

W18	6.47E+05	Aplicaciones de Ejes Simples de Carga Equivalente
ZR	-0.842	Desviación standard Normal
SO	0.45	Desviación standard para Pavimentos Flexibles
PT	2.00	Serviciabilidad final
PI	3.80	Serviciabilidad inicial
ΔPSI	1.80	Variación Total del Indice de Serviciabilidad
MR	25407.64	Módulo de Resilencia efectivo del Material de Fundación
SN	1.81	Número Estructural

ECUACION 02

DATOS

SN	1.81	Número Estructural
a1	0.130	Coeficiente estructural de MICROPAVIMENTO DOBLE 25mm
a2	0.063	Coeficiente estructural de BASE ESTABILIZADA
a3	0.047	Coeficiente estructural de SUBBASE
d1	2.50	Espesor MICROPAVIMENTO DOBLE (cm)
d2	25.00	Espesor BASE ESTABILIZADA CEMENTO + QUIMICO (cm)
d3	0.00	Espesor SUBBASE (cm)
m2	1.00	Coeficiente de drenaje de BASE
m3	1.00	Coeficiente de drenaje de SUBBASE

1.90

VALIDACION OK

MIGUEL DIA Z VA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL RAG. CIP N° 32324 JEFE DE ESTUDIO Tramo: V San Pedro de Chonta San Antonio

ECUACION 01

DATOS

W18	1.14E+05	Aplicaciones de Ejes Simples de Carga Equivalente
ZR	-0.674	Desviación standard Normal
SO	0.45	Desviación standard para Pavimentos Flexibles
PT	2.00	Serviciabilidad final
PI	3.80	Serviciabilidad inicial
ΔPSI	1.80	Variación Total del Indice de Serviciabilidad
MR	26429.31	Módulo de Resilencia efectivo del Material de Fundación
SN	1.30	Número Estructural

ECUACION 02

DATOS

SN	1.30	Número Estructural
a1	0.000	Coeficiente estructural de TRATAMIENTO SUPERFICIAL SIMPLE
a2	0.063	Coeficiente estructural de BASE ESTABILIZADA
a3	0.047	Coeficiente estructural de SUBBASE
d1	1.50	Espesor TRATAMIENTO SUPERFICIAL SIMPLE (cm)
d2	22.00	Espesor BASE ESTABILIZADA CEMENTO + QUIMICO (cm)
d3	0.00	Espesor SUBBASE (cm)
m2	1.00	Coeficiente de drenaje de BASE
m3	1.00	Coeficiente de drenaje de SUBBASE

1.38578

VALIDACION OK

MIGUEL DIA ZVA SQUEZ INGENIERO GEOLOGO Reg. CIP № 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL RAG. CIP N° 32374 JEFE DE ESTUDIO "ESTUDIO DE PREINVERSIÓN A NIVEL DE PERFIL DEL PROYECTO DE MEJORAMIENTO DE LA CARRETERA DV. POMABAMBA - SIHUAS - HUACRACHUCO - SAN PEDRO DE CHONTA - UCHIZA - EMP. PE-5N POR NIVELES DE SERVICIO"

GEOLOGIA, SUELOS Y PAVIMENTOS

DISEÑO DE PAVIMENTOS CONSERVACION

DISEÑO DE PAVIMENTOS METODO AASHTO 1,993 (PAVIMENTOS FLEXIBLES)

PERFIL:

MEJORAMIENTO DE LA CARRETERA DV. POMABAMBA – SIHUAS – HUACRACHUCO – SAN PEDRO - DE CHONTA – UCHIZA - EMP. PE 5N POR NIVELES DE SERVICIO

Alternativa Conservacion al 4TO. Año

Tramo: I.1 Dv. Pomabamba - Sihuas (Inicio zona urbana).

ECUACION 01

$$\log_{10}(W_{18}) = Z_R \times S_O + 9.36 \times \log_{10}(SN + 1) - 0.2 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.4 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$$

DATOS

W18	1.68E+05	Aplicaciones de Ejes Simples de Carga Equivalente
ZR	-0.524	Desviación standard Normal
SO	0.45	Desviación standard para Pavimentos Flexibles
PT	2.00	Serviciabilidad final
PI	3.80	Serviciabilidad inicial
ΔPSI	1.80	Variación Total del Indice de Serviciabilidad
MR	24431.26	Módulo de Resilencia efectivo del Material de Fundación
SN	1.41	Número Estructural

5.2261573 5.23497246

VALIDACION OK

ECUACION 02

UV.	$\Gamma \cap C$
UΑ	เบอ

SN	1.41	Número Estructural
a1	0.000	Coeficiente estructural de TRATAMIENTO SUPERFICIAL BICAPA
a2	0.115	Coeficiente estructural de BASE
a3	0.000	Coeficiente estructural de SUBBASE
d1	2.50	Espesor TRATAMIENTO SUPERFICIAL BICAPA (cm)
d2	15.00	Espesor BASE (cm)
d3	0.00	Espesor SUBBASE (cm)
m2	1.00	Coeficiente de drenaje de BASE
m3	1.00	Coeficiente de drenaje de SUBBASE

1.725

VALIDACION OK

MIGUEL DIAZ VA SQUEZ INGENIERO GEOLOGO Reg. CIP № 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

OSE FERNANDO LUNA HUAMAN INGENIERO CIVIL Reg. CIP N° 32374 JEFE BE ESTUDIO Tramo: VI Ajenjo - San Antonio

ECUACION 01

 $\log_{10}(W_{18}) = Z_R \times S_O + 9.36 \times \log_{10}(SN+1) - 0.2 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.4 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$

DATOS

W18 5.26E+04 Aplicaciones de Ejes Simples de Carga Equivalente ZR Desviación standard Normal -0.524SO 0.45 Desviación standard para Pavimentos Flexibles PT 2.00 Serviciabilidad final Ы Serviciabilidad inicial 3.80 ΔPSI 1.80 Variación Total del Indice de Serviciabilidad MR21984.92 Módulo de Resilencia efectivo del Material de Fundación SN 1.18 Número Estructural

4.72131877

4.72688078

VALIDACION FALSO - 0.01000

ECUACION 02

DATOS

SN	1.18	Número Estructural
a1	0.000	Coeficiente estructural de MICROPAVIMENTO
a2	0.115	Coeficiente estructural de BASE ESTABILIZADA CON EMULSIÓN
a3	0.000	Coeficiente estructural de SUBBASE
d1	1.20	Espesor MICROPAVIMENTO(cm)
d2	15.00	Espesor BASE ESTABILIZADA CON EMULSIÓN (cm)
d3	0.00	Espesor SUBBASE (cm)
m2	1.00	Coeficiente de drenaje de BASE
m3	1.00	Coeficiente de drenaje de SUBBASE

1.725

VALIDACION OK

MIGUEL DIA ZVA SQUEZ INGENIERO GEOLOGO Reg. CIP № 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENERO CINE Reg. CIP N° 32374 JEFE BE ESTUDIO San Antonio - Crisnejas (inicio zona urbana)

Crisnejas (inicio pav flexible) - Crismejas (fin zona urbana) Crisnejas (fin zona urbana) - Uchiza (inicio zona urbana)

ECUACION 01

Tramo:

 $\log_{10}(W_{18}) = Z_R \times S_0 + 9.36 \times \log_{10}(SN+1) - 0.2 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.4 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$

DATOS

W18	3.72E+05	Aplicaciones de Ejes Simples de Carga Equivalente
ZR	-0.674	Desviación standard Normal
SO	0.45	Desviación standard para Pavimentos Flexibles
PT	2.00	Serviciabilidad final
PI	3.80	Serviciabilidad inicial
ΔPSI	1.80	Variación Total del Indice de Serviciabilidad
MR	24258.71	Módulo de Resilencia efectivo del Material de Fundación
SN	1.67	Número Estructural

5.57030939 5.56690195

VII

VALIDACION OK

ALIDACION OK

ECUACION 02

DATOS

SN	1.67	Número Estructural
a1	0.000	Coeficiente estructural de CARPETA TRATAMIENTO SUPERFICIAL BICAPA
a2	0.115	Coeficiente estructural de BASE ESTABILIZADA CON EMULSIÓN
a3	0.000	Coeficiente estructural de SUBBASE
d1	2.00	Espesor CARPETA CARPETA TRATAMIENTO SUPERFICIAL BICAPA (cm)
d2	15.00	Espesor BASE ESTABILIZADA (cm)
d3	0.00	Espesor SUBBASE (cm)
m2	1.00	Coeficiente de drenaje de BASE
m3	1.00	Coeficiente de drenaje de SUBBASE

1.73

VALIDACION OK

MIGUEL DIA ZVA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL Reg. CIP N° 323/4 JFFE DE ESTUDIO Tramo : VIII VIII.1 Uchiza - Santa Lucía (inicio solución báscia)
VIII.2 Santa Lucia (inicio solución básica) - Santa Luica (fin zona urbana)

ECUACION 01

$$\log_{10}(W_{18}) = Z_R \times S_0 + 9.36 \times \log_{10}(SN+1) - 0.2 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.4 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$$

DATOS

W18	4.64E+05	Aplicaciones de Ejes Simples de Carga Equivalente
ZR	-0.674	Desviación standard Normal
SO	0.45	Desviación standard para Pavimentos Flexibles
PT	2.00	Serviciabilidad final
PI	3.80	Serviciabilidad inicial
ΔPSI	1.80	Variación Total del Indice de Serviciabilidad
MR	21984.92	Módulo de Resilencia efectivo del Material de Fundación
SN	1.85	Número Estructural

5.66689221 5.72370708

VALIDACION FALSO - 0.05000 1.90

ECUACION 02

DATOS

SN	1.85	Número Estructural
a1	0.130	Coeficiente estructural de MICROPAVIMENTO DOBLE
a2	0.115	Coeficiente estructural de BASE ESTABILIZADA CON EMULSION
a3	0.000	Coeficiente estructural de SUBBASE
d1	2.50	Espesor CARPETA MICROPAVIMENTO DOBLE(cm)
d2	15.00	Espesor BASE ESTABILIZADA CON EMULSIÓN(cm)
d3	0.00	Espesor SUBBASE (cm)
m2	1.00	Coeficiente de drenaje de BASE
m3	1.00	Coeficiente de drenaje de SUBBASE

2.05

VALIDACION OK

MIGUEL DIAZVA SQUEZ INGENIERO GEOLOGO Reg. CIP Nº 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSÉ FERNANDO LUNA HUAMAN INGENERO CIVIL Rep. CIP N° 3214 JEFE BE ESTUDIO Tramo : IX Santa Lucía (fin zona urbana) - Emp. PE-5N

ECUACION 01

 $\log_{10}(W_{18}) = Z_R \times S_O + 9.36 \times \log_{10}(SN+1) - 0.2 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.4 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$

DATOS

W18	5.93E+05	Aplicaciones de Ejes Simples de Carga Equivalente
ZR	-0.842	Desviación standard Normal
SO	0.45	Desviación standard para Pavimentos Flexibles
PT	2.00	Serviciabilidad final
PI	3.80	Serviciabilidad inicial
ΔPSI	1.80	Variación Total del Indice de Serviciabilidad
MR	21691.45	Módulo de Resilencia efectivo del Material de Fundación
SN	1.95	Número Estructural

5.773201145.77131029

VALIDACION OF

K

ECUACION 02

DATOS

SN	1.95	Número Estructural
a1	0.130	Coeficiente estructural de CARPETA MICROPAVIMENTO
a2	0.115	Coeficiente estructural de BASE
a3	0.000	Coeficiente estructural de SUBBASE
d1	2.50	Espesor CARPETA MICROPAVIMENTO (cm)
d2	15.00	Espesor BASE ESTABILIZADA CON EMULSIÓN (cm)
d3	0.00	Espesor SUBBASE (cm)
m2	1.00	Coeficiente de drenaje de BASE
m3	1.00	Coeficiente de drenaje de SUBBASE

2.05

VALIDACION OK

MIGUEL DIAZVA SQUEZ INGENIERO GEOLOGO Reg. CIP № 159883 ESPECIALISTA EN GEOLOGIA SUELOS Y PAVIMENTOS

JOSE FERNANDO LUNA HUAMAN INGENIERO CIVIL RAG. CIP N° 32314 JEFE DE ESTUDIO