

PROVIAS NACIONAL

INFORME FINAL ESTUDIO DE VERIFICACIÓN DE VIABILIDAD

Historial de versiones

Creado por/

FECHA	CAUSAS

LI MUXULCXX,

Ing. Isabel Hernández Cotrina

Ing. Nicolas Villaseca Carrasco

Revisado por

Lima, 01 de marzo de 2021

Índice

1	Gene	eralidades del Proyecto2
	1.1	Ubicación2
	1.2	Objetivo del Proyecto3
	1.3	Descripción del área de trabajo4
	1.4	Alcance de los servicios
	1.5	Normativa de aplicación7
	1.6	Recursos utilizados8
2	Ante	cedentes9
3	OBJE	TIVO9
4	FORI	MULACIÓN10
	4.1	Descripción del proyecto10
	4.2	Estado situacional de los tramos11
	4.3	Demanda de transporte14
	4.4	Actualización de la demanda (A nivel de Estudio Definitivo)15
5	Inge	niería del proyecto24
6	INVE	RSION37
7	Justi	ficación41
8	EVAI	.UACIÓN42
	Pavim	entos flexibles47
	Pavim	entos rígidos50
9	Cond	lusiones Y RECOMENDACIONES53
10	Α	nexos54
	10.1	Anexo 01: Informe Técnico de Aprobación
	10.2	Anexo 02: Presupuesto de Obra
	10.3	Anexo 03: Presupuesto de Interferencias57
	10.4	Anexo 04: Presupuesto de Mantenimiento58
	10.5	Anexo 05: Planos Generales del Proyecto

1 GENERALIDADES DEL PROYECTO

En cumplimiento de lo establecido en el numeral 5.1 de los Términos de Referencia del Componente de Ingeniería del Estudio Definitivo del Proyecto "Construcción del Puente Santa Rosa, Accesos, Rotonda y Paso a Desnivel, Región Callao", se redacta el presente documento que recoge los trabajos en la Informe N° 01 Estudio de Verificación de Viabilidad.

Asimismo, con motivo de la modificación del término de referencia en función del pliego absolutorio de consultas y observaciones, y del Pronunciamiento N° 663-2018/OSCE-DGR, el expediente de contratación fue aprobado con fecha 18.10.2018 según EXPEDIENTE DE CONTRATACION N° 181-2018-MTC/20.2.

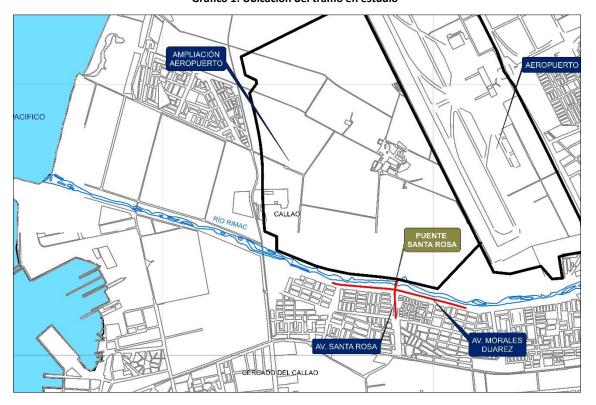
Con fecha 08.11.2018 PROVÍAS NACIONAL otorgó la Buena Pro del Proceso de consultoría para la redacción del Estudio Definitivo del Proyecto "Construcción del Puente Santa Rosa, Accesos, Rotonda y Paso a Desnivel, Región Callao" a URCI CONSULTORES S. L. SUCURSAL DEL PERÚ, cuyo contrato (143-2018-MTC/20.2) fue firmado el 10.12.2018, por un monto de S/2,083,001.84 y un plazo 180 días calendario.

El día 13.12.2018 según el Oficio N° 243-2018-MTC/20.22.1 de inició del plazo contractual del servicio y de acuerdo con lo establecido en los Términos de Referencia (TdR) entregando Informe Inicial - Plan de Trabajo a los siete (7) días calendario con fecha 19.12.2018.

1.1 Ubicación

El tramo objeto de estudio se desarrolla en la Provincia Constitucional del Callao situada en la costa central del país, que posee rango departamental y de circunscripción regional por mandato constitucional. Limita únicamente con la provincia de Lima por el norte, este y sureste, y colinda por el oeste y el suroeste con el Océano Pacífico. Sus coordenadas geográficas se encuentran entre los 10°15′ de latitud Sur y los 75° 38′ y 77°47′ de longitud al oeste del meridiano de Greenwich.

El proyecto en estudio abarca parte de la Av. Morales Duárez, un tramo de la Av. Santa Rosa, el cruce sobre el río Rímac y la conexión con la zona aeroportuaria del Aeropuerto Internacional de Jorge Chávez (AIJCH), e involucra las rutas nacionales PE 20-B y PE 201.


COLAS VILLASECA CARRASCO REG. CHP Nº 29943

rio Viceministe nsportes de Transpor unicaciones

Gráfico 1: Ubicación del tramo en estudio

1.2 Objetivo del Proyecto

En la actualidad el único acceso al Aeropuerto Internacional Jorge Chávez se encuentra ubicado en el cruce entre las avenidas Elmer Faucett y Tomas Valle, permitiendo el acceso a la actual terminal.

Con fecha 26.10.2000 el Consorcio integrado por Flughafen Frankfurt /Main Aktiengesellschaft Bechtel Enterprise Internacional, Ltd y Cosapi S.A. suscriben con el Ministerio de Transportes y Comunicaciones, Vivienda y Construcción, el Contrato para la Construcción, Mejora, Conservación y Explotación del Aeropuerto Internacional Jorge Chávez, donde entre otras actuaciones contempla la construcción de una pista y una terminal para pasajeros.

La nueva terminal de pasajeros estará ubicada frente a la Av. Morales Duárez, y con el fin de asegurar el acceso a la misma, el MTC debe ejecutar la construcción de un puente sobre el río Rímac que conecte ambos márgenes y permita la conexión con la Av. Morales Duárez y la Av. Santa Rosa.

La construcción del Puente de Santa Rosa permitirá salvar el río Rímac y se localiza en la Red Vial Nacional, Ruta PE-20I, Km 0+000, Tramo de carretera: Emp. PE-20B (Av. Morales Duárez) — Av. Santa Rosa — Emp. CL-100 (Av. Costanera), Distrito de Callao, Provincia Constitucional del Callao, Región Callao.

Viceministerio PRO de Transportes NACI

PROVIAS NACIONAL

La nueva estructura permitirá conectar ambas márgenes del río Rímac, dando continuidad a la Ruta PE-20I, que establecerá la conexión con la Nueva Terminal del Aeropuerto Internacional Jorge Chávez.

ACTUACIÓN EDI Santa Rosa

AMPLIACION AEROPUERTO INTERNACIONAL

JÓRGE CHAVEZ

D. NIETO

AV. MORALES DUAREZ

RAMON CASTILLA

AV. DE LA ALAMEDA

AV. MEIGGS

AV. MEIGGS

AV. MEIGGS

Gráfico 2: Tramo en estudio

1.3 Descripción del área de trabajo

El área de trabajo afectado por el diseño permite la conexión de la nueva terminal aeroportuaria con los corredores actuales y futuros tanto de El Callao como de Lima, con el objetivo de disponer de una conexión rápida, segura y eficiente entre los distintos modos de transporte.

La construcción del Puente Sana Rosa sobre el río Rímac, permitirá conectar las siguientes vías:

- ◆ Av. Morales Duárez (PE-20B): desde esta avenida se permite el acceso a las Avenidas Néstor Gambetta (Acceso al Puerto del Callao), Av. Elmer Faucett de LAMSAC (conexión con Panamericana Norte, Panamericana Sur y Ramiro Prialé).
- La Av. Santa Rosa (PE-20I): actualmente el MTC está desarrollando estudios para permitir conectar con la Av. Costanera, siendo un corredor que a través de la costa comunicará el Callao con Chorrillos, dando salida a distritos como San Miguel, Magdalena, San Isidro y Miraflores.

A través de la Av. Morales Duárez se conecta el tráfico que proviene del centro del país, por la Carretera Central (PE-22) y la Autopista Ramiro Prialé, así como el tráfico que

OLAS VILLASECA CARRASC Reg. CIP Nº 29943

proviene del Sur, por la Panamericana Sur (PE-1S), y del Norte por la Panamericana Norte (PE-1N) permitiendo el acceso al aeropuerto. (Ver Fotografía 1).

En cuanto a la Av. Santa Rosa, su sección está formada por 3 carriles por sentido, vías laterales por ambos márgenes y todo ello separado por mediana y terciana respectivamente. (Ver Fotografía 2). Destaca en esta avenida el corte de su continuidad por la existencia de la línea de FFCC Centro y las instalaciones industriales de RAMSA.

Fotografía 2: Visita Av. Santa Rosa

s Viceministerio de Transportes

PROVIAS NACIONAL

El condicionante orográfico más importante de la zona y que es necesario salvar con un puente es el río Rímac.

Por su ubicación geográfica y política, la cuenca del río Rímac es de vital importancia, ya que en su ámbito se encuentra la ciudad de Lima, por ser una ciudad de alta densidad urbana y poblacional, genera condiciones particulares al momento de actuación.

El Río Rímac desempeña un rol vital como fuente de abastecimiento de agua para el consumo humano, agrícola y energético. Contiene cinco centrales hidroeléctricas importantes y sostiene un amplio rango de actividad minera que es particularmente intensa en las zonas más altas.

El área de estudio se ubica en la parte baja de la cuenca del citado río, específicamente en cono de eyección de sedimentos, la pendiente del fondo de cauce es suave, observando acumulaciones de sedimentos en el lecho de río con gravas que oscilan entre 4 a 5 pul.

Fotografía 3: Vista del Rímac

A raíz de la inundación en marzo de 1994 se construyeron diques de protección en las riberas del río, estos a la actualidad se encuentran en muy mal estado. El dique ubicado en la margen izquierda no ha sido construido con criterio técnicos, ya que sus taludes son muy inclinados y el relleno del cuerpo presenta material de desmonte y basura.

LAS VILLASECA CARRASCO REG. CIP Nº 29943

1.4 Alcance de los servicios

De acuerdo con lo establecido en los Términos de Referencia, los trabajos desarrollados para la elaboración de este Informe N° 01 Estudio de Verificación de Viabilidad, han sido:

♦ Todo lo requerido en el numeral 4.5.14, de los Términos de Referencia.

1.5 Normativa de aplicación

Para la elaboración de los trabajos correspondientes a esta Especialidad se ha considerado la siguiente normativa:

- ♦ "Texto Único del Reglamento Nacional de Tránsito Código de Tránsito", aprobado por Decreto Supremo № 016 2009 MTC del 21 de abril de 2009.
- ◆ "Manual de Carreteras: Diseño Geométrico. DG 2018", aprobado por Resolución Directoral № 03 2018 MTC/14 del 30 de enero de 2018.
- ♦ "Manual de Puentes", aprobado por Resolución Directoral № 041 2016 MTC/14, publicada el 18 de enero de 2017.
- Manual de Carreteras, Túneles, Muros y Obras Complementarias", aprobado por Resolución Directoral № 036-2016-MTC/14 publicada el 27 de octubre de 2016.
- ◆ "Requisitos para Autorización de Uso del Derecho de Vía de las Carreteras de la Red Viaria de competencia del MTC", aprobado por Resolución Directoral № 05 2014 MTC/14 del 14 de marzo de 2014, y su modificatoria aprobada por Resolución Directoral № 017 2014 MTC/14 del 21 de julio de 2014.
- ◆ "Glosario de Términos de Uso Frecuente en Proyectos de Infraestructura Vial")
 aprobado con Resolución Directoral № 18 2013 MTC/14 del 14 de julio de 2013,
 modificado con Resolución Directoral № 12 2015 MTC/2014.
- ◆ El Sistema Nacional de Programación Multianual y Gestión de Inversiones que fue aprobada mediante el Decreto Legislativo N° 1252 el 01 de diciembre de 2016, y

OLAS VILLASECA CARRAS Reg. CIP № 29943

entró en vigencia desde el 24 de febrero del año 2017, un día después de la publicación oficial de su respectivo Reglamento.

◆ Mediante el Decreto Legislativo 1432 (16. Setiembre.2018), se modifica el Decreto Legislativo № 1252, que crea El Sistema Nacional de Programación Multianual y Gestión de Inversiones y Deroga La Ley № 27293, Ley Del Sistema Nacional De Inversión Pública.

Se modifica el primer párrafo y los literales b) y c) del artículo 3; los literales a), b) y c) del párrafo 4.1 y el párrafo 4.3 del artículo 4; el párrafo 5.3 del artículo 5; la Tercera y la Quinta Disposición Complementaria Final del Decreto Legislativo N° 1252, Decreto Legislativo que crea el Sistema Nacional de Programación Multianual y Gestión de Inversiones.

- Mediante el Decreto Supremo № 284-2018-EF (09 de diciembre 2018), aprueban el Reglamento del Decreto Legislativo (DL) N° 1252, Decreto Legislativo que crea el Sistema Nacional de Programación Multianual y Gestión de Inversiones (Publicado en el Diario Oficial "El Peruano").
- ◆ Directiva N° 001-2019-EF/63.01: <u>Anexo 11: Parámetros de Evaluación Social</u> (https://www.mef.gob.pe/es/anexos-y-formatos#anexos).

1.6 Recursos utilizados

Para la ejecución de los trabajos de esta especialidad han participado los recursos humanos que se resumen en la Tabla 1, coordinados por el Ing. Nicolas Villaseca Carrasco, jefe del Estudio.

Tabla N° 1: Equipo de profesionales participantes

NOMBRE	PROFESIÓN	CARGO
F. Isabel Hernández Cotrina	Economista	Especialista en Evaluación Económica
Deysi Nitza Castillo Olivares	Economista	Asistente en Evaluación Económica

ECO. ISABEL HERNÁMDEZ COTRINA ESPECIALISTA EVALVACIÓN ECONÓMICA Reg. CEP N° 03476

2 **ANTECEDENTES**

Los Antecedentes más inmediatos para considerar para la redacción de este Estudio Definitivo de Ingeniería son los siguientes:

- Estudio de Preinversión a nivel de Perfil del Proyecto "Construcción del Puente Santa Rosa, accesos, rotonda y paso a desnivel, región Callao", con Código Único 2328807, mediante Memorándum Nº 2696-2017-MTC/09.02 e Informe Técnico № 1527-2016-MTC/09.02 del 112.12.2016
- Estudio de Factibilidad del Proyecto "Construcción del Puente Santa Rosa, accesos, rotonda y paso a desnivel, región Callao", que incluye el Sector Av. Enrique Meiggs-Av. Argentina1, con código SNIP № 365143, mediante Informe Técnico Nº 013-2017-MTC/20.11.2-abm del 26.05.2017
- Verificación de la Viabilidad registrada mediante Memorándum № 759-2017-MTC/20.4 e Informe Técnico № 018-2017-MTC/20.11.2-abm del 26.07.2017
- Bases Integradas del Concurso Público Nº 0025-2018-MTC/20 para la Contratación del Servicio de Consultoría de Obra: Elaboración del Estudio Definitivo del Proyecto "Construcción del Puente Santa Rosa, Accesos, Rotonda y Paso a Desnivel, Región Callao"

3 **OBJETIVO**

El presente estudio, tiene como objetivo constatar la viabilidad del proyecto, con los resultados del estudio definitivo de ingeniería y comparar con los del estudio de pre inversión a nivel de factibilidad, con el cual se le dio la viabilidad.

Los documentos revisados para la elaboración del Informe de verificación de viabilidad son los siguientes:

- Estudio de Factibilidad
- Estudio de Tráfico
- El Expediente técnico

¹ De acuerdo a las bases integradas del C.P. № 0025-2018-MTC/20, el área usuaria aclara que en esta etapa no está incluido estudios en el tramo Av. Enrique Meiggs - Av. Argentina

FORMULACIÓN 4

A continuación, se analizará el Estudio Definitivo del proyecto "Construcción del Puente Santa Rosa, Acceso, Rotonda y Paso a Desnivel, Región Callao".

4.1 Descripción del proyecto

La zona de estudio está ubicada en el departamento de Lima, en la provincia constitucional del Callao, conformando una longitud total de 1.5km aproximadamente en zona urbana, ubicada en el cruce de la avenida Morales Duárez y avenida Santa Rosa hasta su intersección con la avenida Enrique Meiggs.

El tramo objeto de estudio también incluye el levantamiento del cauce del río Rímac entre los puentes de la avenida Néstor Gambetta y avenida Elmer Faucett.

- Región: Lima.
- Altitud: 25 msnm.
- Coordenadas aproximadas en WGS84: Inicio tramo: 268384, 8668493_Fin tramo: 271486, 8668184; proyección UTM Zona 18 Sur.

Fuente: Estudio de Topografía, trazo y diseño vial.

4.2 Estado situacional de los tramos

Av. Morales Duárez

El área para estudiar es en la Av. Morales Duárez, y se inicia (km 0+000) a la altura de la intersección con la Calle 1, hasta la altura de la Calle Tarma.

En este sector se tiene dos vías, cada una de dos carriles separadas por un jardín central, que actualmente se encuentra a nivel de carpeta asfáltica. El pavimento se encuentra en regular estado de conservación ya que presentan desgaste en su superficie (pérdida de finos). Se ha encontrado baches en la intersección con la Av. Santa Rosa.

Hacia el lado derecho de la Av. Morales Duárez, se tiene una vía auxiliar de dos carriles en doble sentido, en regular estado de conservación.

Hacia el lado izquierdo, están grandes montículos de materiales no seleccionados depositados allí como defensa ribereña ante las crecidas del río Rímac.

Fotografía 4. Vista panorámica de la Av. Morales Duárez

Fotografía 5. Detalle del pavimento en la Av. Morales Duárez

Av. Santa Rosa

El área de estudio de la Av. Santa Rosa se inicia en la intersección con la Av. De la Alameda, hasta la intersección con la Av. Morales Duárez.

Actualmente tiene dos vías principales, cada una de tres carriles. Cuenta también con dos vías auxiliares con dos carriles cada uno. El pavimento en todos los casos está muy mal conservado.

Fotografía 6: Vista panorámica de la Av. Santa Rosa

Fotografía 8. Intersección de la Av. Santa Rosa y la Av. Morales Duárez

NICOLAS VILLASECA CARRASCO Reg. CIP Nº 29943

La demanda de transportes de la carretera, está relacionada a la medición del tráfico de vehículos expresada en el Índice Medio Diario Anual (IMDA), el cual fue determinado con el volumen diario de vehículos que transitan por esta vía.

La metodología del estudio de tráfico realizada en el estudio definitivo es la misma que fue desarrollada en la viabilidad, en los ítems siguientes se desarrollará una breve descripción de los estudios de tráfico según viabilidad y el Estudio Definitivo:

a) A nivel de viabilidad

La demanda está constituida por el IMD de la vía en la cual se ubicará el puente. AL respecto se tuene información del TPDA correspondiente al año 2016 que se ha hecho un estudio de tráfico para el proyecto. Las estaciones y el IMD son los siguientes:

Tabla N° 2: Flujo de tráfico al aeropuerto (Ingreso + Salida) - IMDa 2016

	Volúmenes de tráfico						
24 Horas	martes, 26 de julio	miércoles, 27 de julio	jueves, 28 de julio	viernes, 29 de julio	sábado, 30 de julio	domingo, 31 de julio	lunes, 01 de agosto
00:0 - 01:0	1,602	1,084	1,632	901	961	1,070	1,370
01:0 - 02:0	813	743	670	684	664	655	1,35
02:0 - 03:0	419	384	449	515	338	380	499
03:0 - 04:0	654	833	818	600	570	664	926
04:0 - 05:0	979	974	1,144	827	694	838	1,19
05:0 - 06:0	1,172	1,183	1,244	856	878	996	1,322
06:0 - 07:0	1,219	1,362	1,772	1,154	1,128	1,354	1,425
07:0 - 08:0	1,158	1,432	1,822	1,183	1,179	1,671	1,962
08:0 - 09:0	1,261	1,424	1,731	1,082	1,211	1,524	1,560
09:0 - 10:0	1,158	1,243	1,293	1,118	1,102	1,452	1,442
10:0 - 11:0	1,062	1,210	1,062	908	1,039	1,361	1,202
11:0 - 12:0	968	949	963	855	803	1,076	1,13
12:0 - 13:0	894	923	968	782	801	1,010	1,18
13:0 - 14:0	1,028	1,245	988	776	899	1,020	1,032
14:0 - 15:0	1,209	1,216	921	1,360	904	1,037	1,03
15:0 - 16:0	1,158	1,348	924	1,068	1,010	1,420	1,33
16:0 - 17:0	1,301	1,510	1,287	1,223	1,251	1,608	1,37
17:0 - 18:0	1,444	1,714	1,326	1,409	1,370	1,851	1,61
18:0 - 19:0	1,528	1,892	1,380	1,237	1,326	1,922	1,41
19:0 - 20:0	1,607	1,525	1,412	1,383	1,227	1,970	1,289
20:0 - 21:0	1,441	1,272	1,170	1,190	1,361	1,964	1,34
21:0 - 22:0	1,768	1,748	1,277	1,442	1,596	2,000	1, \$7
22:0 - 23:0	1,967	1,807	1,537	1,371	1,713	2,347	2,02
23:0 - 24:0	1,938	1,989	1,318	1,464	1,680	1,999	1,99
Vol. diario	29,748	31,010	29,108	25,388	25,705	3 3,189	32,80
Vol. Máx. diario	1,967	1,989	1,822	1,464	1,713	2,347	2,02
Vol. diurno	20,204	22,013	20,296	18,170	18,207	2 4,240	22,11
Vol. nocturno	9,544	8,997	8,812	7,218	7,498	8,949	10,68
ГРDA				31,206			

Fuente: Estudio de Factibilidad.

Las tasas de crecimiento utilizados son:

Tasa de crecimiento de vehículos ligeros	1.4%
Tasa de crecimiento de vehículos pesados	3.6%

Tabla N° 3: Cuadro resumen del IMDa

	Tasa	TDPA Av.	Elmer Faucett	TDPA del A	\eropuerto
Tipo de Vehículo	anual (%)	Flujo Total	Flujo residual (permanente)	Flujo que circula por Av. Faucett	Flujo total del Aeropuerto
Auto	1.4	68,746	46,457	22,289	28,491
Utilitario	1.4	17,354	15,307	2,047	2,616
Bus	1.4	1,480	1,412	68	87
Camión Ligero	3.6	958	949	9	12
Camión Mediano	3.6	50	50		
Camión Pesado	3.6	2	2		
Articulados	3.6	42	42		
Total, TPI)A	88,632	64,219	24,413	31,206

Fuente: Estudio de Factibilidad.

4.4 Actualización de la demanda (A nivel de Estudio Definitivo)

En base a la inspección de campo realizada, se ha determinado que desde el punto de vista del tráfico y sobre la base de los antecedentes e información secundaria, se han identificado los tramos homogéneos en volumen y composición del tráfico vehicular mostrados en la ¡Error! No se encuentra el origen de la referencia.5.

Tabla N° 4: Estaciones de conteo

COD	INICIO	FIN	UBICACIÓN	RUTA	DIAS	
E1 - Morales Duárez	Av. Néstor Gambetta	Av. Elmer Faucett	Intersección Av. Morales Duárez con Av. Santa Rosa	PE20B	7	
E2 - Santa Rosa	Av. Morales Duárez	Av. Enrique Meigs (Huáscar)	Intersección Francisco Bolognesi con Av. Santa Rosa	PE20I	7	
E3 - Faucett	Av. Morales Duárez	Aeropuerto Jorge Chavez	Intersección Av. Morales Duárez con Av. Elmer Faucett	PE20B	7	
E4 - Gambetta	Av. Morales Duárez	Ransa	Puente Néstor Gambetta	PE20	7	
E5 - Aeropuerto ²	Entrada y Salida del Aeropuerto Internacional Jorge Chavez		Puertas de Ingresos y Salidas Vehiculares del AIJCH		7	
E6 - Ovalo Marina	Av. Oscar Benavides	Av. La Marina	Aproximación Ovalo La Perla	PE20I	7	

² Se tomó la entrada y salida de los vehículos al Aeropuerto Internacional Jorge Chávez

E7 - Quilca	Av. Morales Duárez	Aeropuerto Jorge Chavez	Intersección Av. Elmer Faucett - Av. Quilca	PE20B	7
E8 - Aduana	Av. Morales Duárez	Aeropuerto Jorge Chavez	Entrada y Salida de la Av. Elmer Faucett	PE20B	7

Nota: Cabe resaltar que este tramo denominado como tramo homogéneo de tráfico, no coincide necesariamente con tramos con características orográficas similares, sino que obedece al comportamiento de los deseos de viaje de los usuarios. Fuente: Estudio de Tráfico.

Factor de corrección:

Los factores de corrección estacional son valores que tienen la finalidad de eliminar las variaciones del comportamiento del tránsito a lo largo de un año, incluye todo tipo de eventos como fiestas nacionales, épocas escolares y en general eventos que todos los años son realizados periódicamente y que tienen carácter anual.

Tabla N° 5: Factor de Corrección

UNIDAD DE PEAJE DE CORRECCION	FACTOR DE CORRECCION - ENERO		
UNIDAD DE PEAJE DE CORRECCION	LIGEROS	PESADOS	
Monterrico	1.118	0.960	

Fuente: Peaje de Monterrico. LAMSAC. Año 2015 Fuente: Estudio de Tráfico.

Índice Medio Diario Según clase vehicular:

Aplicando la metodología indicada en el Apartado 2.4.1 del informe de Tráfico, se « obtiene el IMD_S, el cual será afectado por el factor de corrección mensual (FC), indicado en la Tabla ¡Error! No se encuentra el origen de la referencia.5, obteniendo el IMD_A .

En el Anexo 2 del Estudio de Tráfico, se presentan los datos obtenidos de cada Estación de Control vehicular. Estos resultados se resumen en la Tabla Nº 6.

Tabla N° 6: **IMDA** Resumen por Tramos

COD	UBICACION	TRAMO		
COD	OBICACION	Inicio	Fin	IMDA
E1	Intersección Av. Morales Duárez con Av. Santa Rosa	Av. Néstor Gambetta	Av. Elmer Faucett	13751
E2	Intersección Francisco Bolognesi con Av. Santa Rosa	Av. Morales Duárez	Av. Enrique Meigs (Huáscar)	8938
E3	Intersección Av. Morales Duárez con Av. Elmer Faucett	Av. Morales Duárez	Aeropuerto Jorge Chavez	115081
E4	Puente Néstor Gambetta	Av. Morales Duárez	Ransa	40876
E5	Puertas de Ingresos y Salidas Vehiculares del AIJCH	Entrada y Salida del Aeropuerto Internacional Jorge Chavez		46560
E6	Aproximación Ovalo La Perla	Av. Oscar Benavides	Av. La Marina	23983
E7	Intersección Av. Elmer Faucett - Av. Quilca	Av. Morales Duárez	Aeropuerto Jorge Chavez	25353

Viceministerio	PROVIAS
de Transportes	NACIONAL

E8 Entrada y Salida de la Av. Elmer Faucett	Av. Morales Duárez	Aeropuerto Jorge Chavez	24468
---	--------------------	-------------------------	-------

Fuente: Estudio de Tráfico.

Proyección de la demanda de tráfico:

Como se ha dado a entender, el tráfico total del Puente Santa Rosa está compuesto por el tráfico normal, el tráfico generado por el proyecto y el tráfico desviado de otras rutas. Por ello, el tráfico proyectado final es el resultado de sumar los tráficos normal, generado y desviado.

- Las tasas de crecimiento utilizados son:

Tasa de Crecimiento Vehículo Ligeros	1.5%
Tasa de Crecimiento Vehículo Pesados	5.5%

Fuente: Estudio de Tráfico.

Tráfico generado:

El tráfico generado se origina a partir de:

- Redistribución de Viajes, por la reducción de costos (tiempo) muchos usuarios pueden cambiar de destino y utilizar la carretera.
- Demanda latente, estos Viajes no se daban antes y aparecen con la mejora, es decir por la falta o reducida accesibilidad o por cambio de usos de suelos o por cambio de modo.

Por lo que las mejoras en el incremento de una calzada por sentido en el futuro eje Vial tendrán un significativo impacto tanto en el crecimiento del tráfico normal como del tráfico generado (**estimando en un 5%** como escenario moderado), debido al crecimiento que se viene dando en nuestro país y en especial en el área de influencia directa del proyecto.

Tráfico desviado

El **tráfico desviado** es aquel que utiliza otras rutas pero que, manteniendo su origen y destino, será atraído por la vía mejorada, por un criterio de reducción de costos.

Para el presente estudio se considerará el Tráfico Desviado por las mejoras y la importancia que tendrá esta avenida una vez que se concluya la ampliación del Aeropuerto Internacional Jorge Chávez y con ello la construcción del Puente de Acceso al mismo como parte de la Ruta Nacional PE-20I, por lo cual al encontrarse la avenida Santa Rosa en una zona urbana se determinará el Tráfico Desviado a través de herramientas especializadas (Trasncad 6.0) e información secundaria que permita determinar la demanda a futuro (Mayor detalle en el Estudio de Tráfico).

OLAS VILLASECA CARRAS Reg. CIP № 29943

Tabla N°7: Proyección del tráfico normal y desviado del Puente Santa Rosa

FAL		23,203	24,718	24,412	26,033	25,684	27,418	27,021	28,878	28,429	30,414	29,910	32,033	31,468	33,738	33,107	35,533	34,832	37,425	36,224	38,907	37,672	40,449	39,178	42,051	40,744	43,717	42,373	45,449	44,067	47,250	45,828	49,122	47,660	51,068	49,566	53,091	51,547	55,194	53,608	57,381
T01	3	- 23	- 57	- 54	- 26	- 25	- 2	- 27	- 28	- 28	- 3(- 26	- 32	- 31	- 33	- 33	- 35	- 34	- 37	- 36	- 38	- 37	- 40	- 36	- 42	- 40	- 43	- 42	- 45	- 4	- 47	- 4	- 49	- 47	- 51	- 49	- 55	- 51	- 55	- 25	- 2
	<u></u>																																								
TRAYLER	3T2		'	<u>'</u>		Ľ	ľ	'	<u>'</u>		'											-				'	Ċ							•	ľ				-		
	2T3	•	'	'	ľ		'	'	'	'	'		'				1	İ		•	'		•		•						•			,	'			•	-		_
	217	•	,									٠	•	٠		•	•	•	•	•	•		٠		•		٠		•	٠	•	•		,		•		•		•	
	>=383																				•					-													-		
LER	381/382		,																		,					-													-		-
	283		,						,		,	-	,			-					,	-							-		-		-	,		•			-		
	11252		,										,								•		•			-								,					-		-
	E 28		,											-							,						-												-		
NOI			,					,				-	,			-					,	-							-		-		-	,					-		-
CAMION	36	31	9	33	7	34	7	36	7	37	7	39	00	41	8	43	6	45	6	47	6	48	10	90	10	52	10	55	11	25	11	59	12	61	12	64	13	99	13	69	14
	Æ																																								
	₩	. 9	'	- 9	'	- 9	'	9	'	- 1	'	- 2		- 7	_	- 8		8		- 8		- 6		- 6		- 6		10		10 -	•	10 -		- 11	'	- 11		1	-	21	
BUS	8		'		'		'		'		'		•						•		'		•		•				•		•		'						-		_
	Æ	70	,	74	·	78	•	82		87	•	91	•	96	٠	101	1	107	•	111	•	116	٠	120	•	125	•	130	•	135	•	141		146	•	152		158		165	
MICRO		19	33	20	3	21	3	23	4	24	4	26	4	28	4	29	5	31	5	33	5	34	9	35	9	37	9	38	9	40	9	41	7	43	7	45	7	47	8	48	8
	CR	1,115	840	1,177	888	1,242	938	1,311	365	1,384	1,048	1,461	1,107	1,542	1,170	1,627	1,237	1,718	1,307	1,787	1,359	1,858	1,412	1,932	1,469	2,010	1,527	2,090	1,587	2,174	1,650	2,261	1,716	2,351	1,784	2,445	1,855	2,543	1,928	2,645	2,005
	PANEL	99	102	69	108	61	115	64	121	29	128	70	136	74	144	77	152	81	161	84	168	87	174	91	181	94	188	86	196	102	204	106	212	110	220	115	229	119	238	124	247
	JCK UP	227	242	539	254	251	566	564	280	278	294	293	309	308	324	325	340	342	357	355	371	370	386	384	401	400	417	416	434	432	451	450	469	468	487	486	202	909	527	526	548
STATION WAGON	TAXI	413	522	434	548	456	976	480	909	202	929	531	899	699	702	288	737	618	775	643	802	699	837	969	870	723	906	752	941	782	878	814	1,017	846	1,057	880	1,099	915	1,142	852	1,187
		309	317	326	333	344	351	362	369	381	388	402	408	424	429	446	451	470	474	489	493	609	513	529	533	220	554	572	976	269	599	619	622	644	647	029	673	269	669	724	727
AUTO AUTO TAXI WAGON	PAR	1,515	1,924	1,591	2,020	1,670	2,120	1,753	2,225	1,840	2,335	1,931	2,451	2,027	2,573	2,128	2,701	2,234	2,835	2,323	2,947	2,416	3,063	2,513	3,184	2,613	3,310	2,717	3,441	2,826	3,578	2,939	3,719	3,056	3,866	3,178	4,019	3,305	4,178	3,437	4,343
TO AUTO	N TOTAL					21,520																						35,494					41,349						46,461	44,905	
	LANIE	19	20	20	21,	21,	23	22	24	23	25	25	26	26	28	27.	29	29	31	30	32	31	34	32	35	34	36	35	38	36	39	38	41	39	42	41	44	43	46	44	48
SENTIDO		NS	SN	SN	SN	NS	SN	NS	SN	NS	SN	NS	SN	NS	SN	NS	SN	NS	SN	NS	SN	NS	SN	NS	SN	NS	SN	SN	SN	SN	SN	NS	SN								
Año		ננטנ	7707	2000	5707	1000	507	3000	5707	2000	2070	2000	7707	0000	2078	0000	6707	2030	2022	2021	1007	1037	7007	2022	5033	2024	502	3035	502	3000	7020	2037	707	2030	2038	3030	2039	2040	0407	2041	74.07

Fuente: Estudio de Tráfico.

NICOLAS VILLASECA CARRASCO

Informe Final Estudio de Verificación de Viabilidad

Tabla N° 8: Proyección del tráfico generado del Puente Santa Rosa

TOTAL		1,160	1,236	1,221	1,302	1,284	1,371	1,351	1,444	1,421	1,521	1,495	1,602	1,573	1,687	1,655	1,777	1,742	1,871	1,811	1,945	1,884	2,022	1,959	2,103	2,037	2,186	2,119	2,272	2,203	2,362	2,291	2,456	2,383	2,553	2,478	2,655	2,577	2,760	2,680	2,869
	>=3T3								•																																
	3T2								•																																
	ZT3						-																																		
	2172								•																																
	>=383						-	-	•																																
	381/382						-	-																																	
	283								•						•	•	•					•																			
	281/282																																								
	4€						-																																		
	Æ						-		•																																
	Æ	2	0	2	0	2	0	2	0	2	0	2	0	2	0	2	0	2	0	2	0	2	0	3	1	3	1	3	1	3	1	3	1	3	1	3	1	3	1	3	1
	₩						•	•						•	•	•	•	•			•	•		•				•													
	3E	0		0	•	0		0	'	0		0	٠	0	•	0	•	0		0	٠	0		0		0		0		1		1		_		1		1		1	
	2E	4		4	•	4	-	4		4		9		9	•	9	•	9		9	•	9		9		9		7		7		4		7		8		80		8	
MICRO		1	0		0	1	0	1	0	1	0	1	0	_	•	_		2	0		0	2	0	. 2	0		0		0		0	2	0	2	0	2		, 2	0		
	CR	3 56	5 42	3 59	5 44	3 62	6 47	3 66		69			99			20								97		100						113		_	68	,				6 132	
	PANEL																																							76	
	PICK UP	1 11	6 12	2 12	7 13	3 13	9 13	4 13																																48 2	
STATION		15 21	16 26	16 22	17 27	17 23	18 29	18 24																																36 4	
STATION																																									
AUTO AITO TAXI	W.	72 76	96 88	3 80	101	76 83	52 106	32 88																																172	
AUTO	PARTICUL	972	1,038	1,023	1,094	1,076	1,152	1,132	1,21	1,19	1,27	1,25	1,34	1,31	1,41	1,38	1,49	1,45	1,57	1,51	1,63	1,57	1,70	1,641	1,77	1,70	1,84	1,77	1,91	1,84	1,98	1,91	2,06	1,99	2,14	2,07	2,23	2,15	2,32	2,245	2,41
SENTIDO		SN	SN	SN	SN	SN	SN	SN	SS	SN	SN	SN	SN	SN	SS	SI	SS	SN	SN	NS	SS	NS	SS	NS	SN	NS	SN	NS	SS	NS	NS	SN	NS	SN	NS	SN	NS	SN	NS	NS	SN
Año		ctor	7707	2005	5707	7034	5024	בטני	700	2000	2070	7000	1707	9000	0707	סנטנ	5707	2020	0007	1000	1007	רכטנ	7077	3083	5002	NCO.	+C02	יייייי	503	3000	0007	2002	/507	9000	2020	טבטב	5007	0000	7040	יייטר	1407

Fuente: Estudio de Tráfico.

NICOLAS VILLASECA CARRASCO

consultores

Tabla Nº 9: Proyección del tráfico total del Puente Santa Rosa (Suma de ambos sentidos)

TOTAL		50,064	52,701	55,477	58,399	61,475	64,713	68,122	71,710	75,488	78,492	81,615	84,862	88,239	91,750	95,401	99,197	103,144	107,248	111,515	115,952
CAMION	2E	39	41	43	45	47	49	51	54	99	28	19	63	99	89	71	74	11	80	83	98
	4E	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	
BUS	3E	9	9	9	7	7	7	8	8	8	6	6	6	10	10	11	11	11	12	12	13
	2E	74	28	82	98	91	96	101	106	112	116	121	126	131	136	141	147	153	159	165	172
MICRO		23	24	26	27	29	31	33	36	38	40	41	43	45	46	48	20	25	54	22	29
	CR	2,042	2,157	2,278	2,405	2,540	2,683	2,833	2,992	3,160	3,286	3,417	3,553	3,695	3,842	3,995	4,155	4,320	4,492	4,672	4,858
CAMIONETA	PANEL	166	174	184	194	204	216	227	240	253	263	273	284	292	307	319	332	345	326	373	388
	PICK UP	489	514	541	269	298	629	199	969	730	129	200	821	854	888	923	096	866	1,037	1,079	1,122
STATION	TAXI	926	1,026	1,079	1,134	1,192	1,253	1,317	1,384	1,455	1,513	1,573	1,636	1,701	1,768	1,839	1,912	1,988	2,067	2,149	2,235
STATION WAGON	PARTICULAR	654	689	725	292	804	846	891	826	286	1,026	1,067	1,110	1,154	1,200	1,248	1,297	1,349	1,403	1,458	1,516
AUTO TAXI		3,593	3,772	3,959	4,156	4,362	4,579	4,806	5,045	5,295	2,506	5,724	2,952	6,188	6,434	069'9	6,955	7,232	7,519	7,818	8,128
AUTO PARTICULAR AUTO TAXI		42,002	44,220	46,555	49,013	51,601	54,325	57,194	60,214	63,393	65,916	865'89	71,266	74,101	77,050	80,116	83,304	86,618	390,065	93,649	97,375
Año		2022	2023	2024	2025	2026	2027	2028	5029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041

Fuente: Estudio de Tráfico.

Rotonda y Paso a Desnivel, Región Callao" (143-2018-MTC/20.2) Eco. ISABEL HERNÁNDEZ COTRINA
ESPECIALISTA EVALUACIÓN ECONÓMICA
JEFE DE ESTUDIO
Reg. CEP N° 03476 Estudio Defini Regue DHO Nati 2994 Burucción del Puente Santa Rosa, Ages 6944 NICOLAS VILLASECA CARRASCO

Página 20 Informe Final Estudio de Verificación de Viabilidad

Informe Final Estudio de Verificación de Viabilidad

Página 21

consultores

Tabla N° 10: Proyección del tráfico normal y desviado Av. Morales Duárez

TOTAL		4,330	5,479	4,489	5,610	4,654	5,744	4,825	5,883	5,002	6,025	5,185	6,172	5,376	6,322	5,574	5 778	6,636	6,025	6,975	6,308	7,336	6,632	7,719	2,000	8,125	7,417	8,558	7,887	9,017	8,417	9,505	9,013	10,025	9,680	10,578	10,428	11,166	11,264	11,792
TRAYLER	>=3T3	0	19	0	20	0	21	0	21	0	22	1	23	- 3	74	- 2	64 +	25	-	26	1	27	-	28	1	28	1	29	-	30	1	31	1	31	1	32	1	8	- ;	ਲ
	>=383	603	833	929	862	651	892	929	922	703	954	730	286	759	1,02T	1 /88	919	1,092	795	1,120	772	1,148	749	1,177	727	1,207	902	1,238	685	1,269	999	1,302	949	1,335	627	1,368	609	1,403	291	1,439
LER	381/382	11	32	1	33	11	34	12	32	12	36	12	88	13	88	13	43 4	14	13	42	14	43	14	4	14	45	14	46	15	47	15	47	15	48	15	46	16	20	16	21
SEMITRAYLER	2S3	208	164	215	170	222	176	230	182	238	188	246	195	254	202	203	27.1	216	262	221	252	227	243	233	234	239	526	245	218	252	210	258	202	265	195	272	188	279	181	786
	S1/2S2	4	2	4	3	4	3	4	3	4	3	4	3	4 (ρ,	4 0	0 4	. 6	4	3	4	3	4	3	4	3	4	3	4	3	4	3	4	3	4	3	4	3	4	က
	4E 28	82	153	82	159	88	164	92	170	92	176	66	182	102	188	90 100	110	201	106	207	103	212	66	217	96	223	93	229	06	235	98	241	84	247	81	254	78	260	75	267
CAMION	3E	190	348	197	360	204	373	212	386	220	399	229	413	238	47/	747	256	457	249	468	242	480	235	493	228	202	222	518	215	532	209	545	203	226	198	574	192	288	187	903
CA	2E	841	584	872	604	905	625	939	646	975	999	1,012	169	1,050	/14	1,090	1 134	763	1,099	782	1,068	801	1,038	821	1,009	841	981	861	953	882	976	904	006	926	875	948	820	971	979	992
	щ		10		11	-	11		12	-	12		12	, ;	13	. 5	2 .	14		14	-	14		15		15		15		16		16		17		17		18		18
S	7		10		10	-	11		11	-	11		12	, ;	7.1	, 0	2 .	13		13	-	14		14		15		15		15	-	16		16		17		17	. !	18
BUS	36	32	29	33	69	34	71	35	74	37	76	38	62	9 8	ω :	41	\$ \q	287	42	89	41	91	41	86	40	96	39	66	33	101	38	104	88	106	37	109	36	112	. 98	115
30	28	28	4	29	4	31	5	32	2	34	9	35	9	37	- 5	39	41	. 80	41	6	42	10	43	10	44	11	45	12	45	13	46	15	47	16	48	17	49	19	20.	20
MICRO		40	206	42	509	44	213	46	217	49	220	51	224	54	877	26	202	235	19	253	62	27.1	64	292	99	313	29	337	69	361	71	388	73	417	75	448	77	481	79	217
1	I. CR	6	43	6	44	10	44	10	4	11					l			46																						
CAMIONETA	PANE	06	146	93	147	95	148	98	149	100								155																						
	PICK UP				1		1		_	1	1	1							_	1	1	1	1	_	1	2	2	2	2	2	2	2	e0	2	e.	8	9	eo .	4	m
STATION WAGON	TAXI	138	233	143	234	148	235	153	237	158	238	163	240	169	747	1/4	180	244	201	262	224	281	250	302	278	325	310	349	346	375	386	403	430	433	480	465	535	499	282	237
STATION		169	115	175	118	181	120	187	122	194	125	201	127	207	U\$1	275	200	135	246	145	271	156	300	168	332	180	366	194	405	208	448	224	495	241	547	259	909	279	899	300
AUTO TAXI		325	237	336	242	347	248	358	254	370	260	382	566	394	717	40/	420	282	469	305	523	328	584	352	651	377	727	405	811	434	305	466	1,009	200	1,126	536	1,256	226	1,402	618
AUTO		1,561	2,271	1,618	2,311	1,677	2,352	1,739	2,394	1,802	2,437	1,869	2,480	1,937	2,524	2,008	2,009	2,615	2,295	2,799	2,530	2,996	2,789	3,206	3,075	3,432	3,390	3,673	3,738	3,931	4,121	4,208	4,543	4,503	2,008	4,820	5,521	5,159	6,087	5,521
SENTIDO		E-0	O-E	E-0	0-E	E-0	0-E	E-O	O-E	E-0	0-E	E-0	0-E	EO	÷	EO L	ų ç	9-0	EO	0-E	E-0	0-E	E-O	0-E	E-O	O-E	E-0	0-E	E-O	0-E	E-0	0-E	E-O	0-E	E-O	0-E	E-0	Ö-E	<u>О</u> Ш	O-E
Año		2002	7707	2003	202	7000	+202	2002		3000	2020	7002	Ì	2028		2029		2030	1000	702	2032	2002	2033	5007	203/4	4024	2035		2036	2030	2037	7503	2038	0004	2039	200	2040		2041	

Fuente: Estudio de Tráfico.

NICOLAS VILLASECA CARRASCO

Rotonda y Paso a Desnivel, Región Callao" (143-2018-MTC/20.2) Eco. ISABEL HERNÁNDEZ COTRINA
ESPECIALISTA EVALUACIÓN ECONÓMICA
JEFE DE ESTUDIO
Reg. CEP N° 03476 Estudio Defini Regue DHO Nati 2994 Burucción del Puente Santa Rosa, Ages 6944

consultores

Tabla Nº 11: Proyección del tráfico generado Av. Morales Duárez

씽

e P 岁 岁 S E

0 0 13

岁요岁요岁요岁

 유 S E

岁요岁요岁요

0 2 1 4 1 4 1 2 2 2

2 2 4 2 4 2 2 2 2

NICOLAS VILLASECA CARRASCO

Fuente: Estudio de Tráfico.

Página 23

Consultores

s)
용
Ě
ĕ
Š
2
Ξ
e
(Suma de ambos sentido
Ë
S
z (Sur
ē
ď
s D
ales Duárez
ā
v. Morales I
<u>.</u>
₹
ţ
2
ráfico total Av.
áfi
₽
e
ڃ
ij
ě
<u></u>
₫
• •
N° 12: Proyección del tráfico total /
ŝ
a
Tabla N° 12:
-

		ı				1															
TOTAL		11,456	11,795	12,145	12,506	12,880	13,265	13,663	14,075	14,500	15,184	15,936	16,761	17,666	18,658	19,744	20,934	22,236	23,661	25,221	26,929
TRAYLER	>=3T3	23	24	25	26	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
	>=3S3	1,677	1,738	1,801	1,867	1,935	2,005	2,078	2,154	2,232	2,237	2,243	2,250	2,260	2,270	2,283	2,297	2,313	2,331	2,350	2,370
/LER	3S1/3S2	20	52	23	22	22	28	09	62	64	99	99	89	69	20	71	73	74	9/	2.2	62
SEMITRAYLER	2S3	435	450	465	481	497	514	532	220	269	264	260	226	223	220	248	547	546	545	545	246
	281/282	80	80	8	8	∞	80	6	6	6	6	6	6	6	8	80	8	80	80	8	8
	4E 2	275	285	295	305	316	328	339	351	364	396	368	370	373	376	379	382	386	391	395	400
CAMION	3E	628	651	674	869	723	749	9//	804	833	838	844	820	857	864	873	881	891	901	911	923
CA	2E	1,664	1,724	1,787	1,852	1,919	1,988	2,061	2,135	2,213	2,197	2,183	2,171	2,160	2,151	2,144	2,137	2,133	2,129	2,128	2,127
		12	13	13	13	14	14	15 2	15 2	16 2	16 2	17 2	17 2	18	18 2	19 2	19 2	20 7	20 2	21 2	21 2
	4E	12	5	2	3	3	4	4	10	10	16			2		8	81	6	6	0	0
BUS	3E	7	12	12	13	13	14	14	15	15	1(16	17	17	17	18	1	19	19	20	20
	2E	115	119	123	127	132	136	141	146	151	153	155	157	159	161	163	166	168	171	173	176
MICRO		37	33	41	4	46	49	51	54	25	29	19	62	64	29	69	71	74	9/	79	82
	CR	287	293	300	307	314	321	328	336	344	366	330	415	443	472	503	236	572	611	652	969
CAMIONETA	PANEL	61	62	63	49	92	99	<i>L</i> 9	89	20	74	2/2	83	88	94	100	106	113	120	128	136
0	PICK UP	275	279	284	288	293	297	302	307	311	343	378	417	460	208	561	620	989	759	841	933
STATION WAGON	TAXI	433	440	447	455	462	470	478	486	495	240	230	645	704	170	842	921	1,008	1,103	1,208	1,324
WAGON	R COLA	332	342	352	362	372	383	394	405	417	456	499	546	298	654	717	785	826	942	1,032	1,130
		299	9/9	969	715	735	756	778	801	824	902	994	1,093	1,202	1,322	1,454	1,601	1,763	1,942	2,140	2,358
AUTO PARTICULA AUTO TAXI	R	4,475	4,589	4,706	4,827	4,951	5,079	5,211	5,347	5,486	5,950	6,454	7,003	7,600	8,250	8,957	9,727	10,566	11,479	12,474	13,558
Año		2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041

Fuente: Estudio de Tráfico.

Informe Final Estudio de Verificación de Viabilidad Estudio Defini Regue OHO Nati 2984 atrucción del Puente Santa Rosa, Agos so Mu

Estudio Definitivação de Desprivel, Región Callao" (143-2018-MTC/20.2) Eco. ISABEC HERNÁNDEZ COTRINA

ESPECIALISTA EVALUACIÓN ECONÓMICA

JEFE DE ESTUDIO

Reg. CEP N° 03476

NICOLAS VILLASECA CARRASCO

5

INGENIERÍA DEL PROYECTO

a) Según viabilidad

- Características topográficas, geológicas e hidrológicas:

La topografía en los emplazamientos del puente es plana y se ubican mayormente en zonas de borde litoral, sobre una amplia superficie conformadas por arenas, limos, arenas con gravas, provenientes del transporte y sedimentación del rio Rímac. El río Rímac inicia su recorrido en la vertiente occidental de la cordillera de los Andes a una altitud de aproximadamente 5.508 m en el Nevado Paca, recorriendo las provincias de Lima y Huarochirí, ambas ubicadas en el departamento de Lima. Entre los tributarios más importantes del Rímac encontramos el Río Santa Eulalia, el Río San Mateo o Alto Rímac y el Río Blanco.

Su estratigrafía de la zona de estudio se enmarca en el antiguo cono de deyección del valle del río Rímac, cuyos materiales que lo conforman son estratos pertenecientes al cono en mención que pertenecen al Cuaternario holocénico (Qh-al).

Superficialmente entre O a 2 m de profundidad (en promedio), se tiene presencia de un relleno no controlado, suelto, heterogéneo. Debajo de este horizonte hasta los 20.00 m de profundidad se tiene material que predomina en la zona evaluada, compuesta por grava pobremente (GP) y horizontes de grava bien gradada (GW), envueltas en una matriz arena limosa y cantos rodados cuyos tamaños varían entre 4" - 17"; así mismo, se evidencian intercalaciones de lentes de arenas. Las gravas y cantos presentan formas redondeadas a sub redondeadas de naturaleza ígnea, de texturas finas a gruesas y resistencia dura.

En base a los ensayos directos (calicatas) e indirectos (refracciones sísmicas) y los ensayos de laboratorio respectivo, los estratos donde se enmarca el proyecto sujeto a estudio presentan condiciones geológicas aceptables para los trabajos de cimentación requeridos.

- Estructura

Diseño del Puente

La superestructura está formada por vigas longitudinales y vigas transversales, están suspendidas por el arco de sección variable mediante péndolas.

La losa de concreto se apoyará sobre las vigas transversales de acero y losa de concreto armado será de 0.20m.

Longitud Total : 60.00 m Luz ente Apoyos : 42.35 m Flecha : 7.35 m

Numero de Vigas Long. : 6 Vigas longitudinales. Numero de Vigas Trans. : 14 Vigas Transversales.

Número de Arcos : 2 Arcos de sección variable rectangular.

Ancho Superestructura : 21.28 m

Ancho del tablero : 17.60 m, incluyendo Muros N. Jersey.

Espesor de la losa : 0.20 m de espesor.

LAS VILLASECA CARRASC Reg. CIP Nº 29943

Vehicular

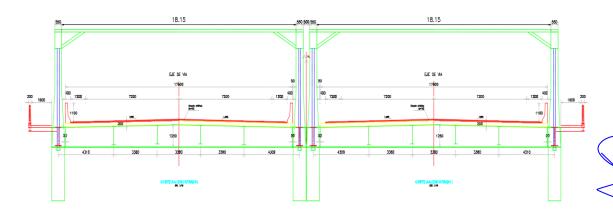
Sección de Arco Arcos de sección Rectangular de Acero.

Subestructura

Estribos:

Uso

Muros de concreto reforzado, en forma de U en vista de planta, con muros laterales perpendiculares al muro frontal y alas en sus extremos. El tipo de cimentación en los extremos será directo.


Materiales Estructurales:

Concreto:

Estribos: f;c = 280kg/cm2

Acero:

Acero de Refuerzo: ASTM A615 Grado 60, Y= 4,200 Kg/cm²

Varios

Apoyos:

En Estribos, apoyos flexibles de tipo neopreno reforzados con placas de acero, que permiten el desplazamiento longitudinal del tablero.

Juntas:

Juntas de dilatación de acero con sello elástico de neopreno.

Tubos de drenaje:

De fierro galvanizado de 10 cm de diámetro.

Veredas:

Las veredas se instalarán exteriormente en volado y se fijarán en la viga longitudinal coplana? del arco, la losa de la vereda de espesor de 10 cm, se vaciará sobre una lámina de Steel Deck. El ancho del volado será de 1.80 m de ancho y 1.60 m libres en el extremo del volado se instalará la baranda metálica.

De concreto reforzado f'c = 210 kg/cm2 y de sección ½ New Jersey de 40 cm de ancho a cada lado de la vía.

De acero estructural conformado por un poste de sección I y pasamanos tubulares protegidos mediante sistema de recubrimiento tipo zinc inorgánico – epóxico – poliuretano.

Diseño de la Rotonda

Las características de la Rotonda son las siguientes:

Ancho de Calzada 14.40 m Número de Carriles Ancho de Carril 3.60 m Ancho de Berma Interna 0.60 m Ancho de Berma Externa 1.00 m Velocidad Directriz 40 km/h Diámetro de la Isla central 30.40 m Diámetro del circulo inscrito 62.40 m Luz del puente losa 23.43 m

Longitud de recorrido

 Carril 1
 :
 110.50 m (aprox.)

 Carril 2
 :
 133.20 m (aprox.)

 Carril 3
 :
 155.80 m (aprox.)

 Carril 4
 :
 178.40 m (aprox.)

Condición estructural:

Pavimento rígido de 280 kg/cm2

2 losas de concreto armado

2 Estribos de concreto armado

Muros de Contención en los accesos a la Rotonda de la Av. Morales Duárez. Muros New Jersey de 1.10x0.40 para protección de la isla central de la rotonda.

Accesos:

Av. Morales Duárez : 2 calzadas x ancho de calzada 7.20 m x carril de 3.60 m x 2 carriles. Av. Santa Rosa : 2 calzadas x ancho de calzada 10.80 m x carril de 3.60 m x 3 carriles.

Diseño vial del Paso a Desnivel

Las características del paso a desnivel son las siguientes:

Longitud : 880.00 m Galibo (Cruce puente) : 5.20 m

Condición estructural : Pavimento rígido de 280 kg/cm²

Ancho de Calzada : 7.20 m (por sentido)

Número de Carriles : 2 por sentido

Ancho de Carril : 3.60 m

Ancho de Berma Interna : 0.60 m

Ancho de Berma Externa : 1.20 m

Velocidad Directriz : 80 km/h

Separador central (Muro New Jersey) : 0.80 m de ancho.

Condición estructura : Pavimento rígido de 280 kg/cm2

ECO. ISABÉK HERNÁNDEZ COTRINA
SPECIALISTA EVALVACIÓN ECONÓMICA
DES CED Nº 03476

Capacidad de carga

Las cargas de diseño consideradas para la construcción de la infraestructura existente no responden a la normatividad vigente, en tal sentido, con el proyecto se buscará definir una estructura con la norma de Carga AASHTO LRFD, SC AASHTO HL93.

Finalmente se concluye que bajo las condiciones funcionales y estructurales en las cuales se encuentran los puentes del corredor en estudio es necesario su pronto remplazo.

Diseño

Alternativa 3	PTE. TIPO ARCO METALICO + ACCESOS + PASO A DESNIVEL MORALES DUAREZ + ROTONDA	S/. 76,764,983.30
---------------	--	-------------------

Fuente: Estudio a nivel de Factibilidad.

b) Según Estudio Definitivo

La zona de estudio está ubicada en el departamento de Lima, en la provincia constitucional del Callao, conformando una longitud total de 1.5km aproximadamente en zona urbana, ubicada en el cruce de la avenida Morales Duárez y avenida Santa Rosa hasta su intersección con la avenida Enrique Meiggs. A continuación se describe las estructuras proyectadas:

Estructura diseño del Puente sobre el río Rímac

El puente diseñado sobre el río Rímac, consta de un tablero de almas postensadas en W con losa inferior postensada.

Diseño geométrico:

Nº de vanos del puente : 1

Luces del puente : 65.00 m

: 2x18, 90 m (estribo 1); 2x20, 90 m (estribo 2) Ancho superior del tablero

Distribución del ancho (Bionda+ Vereda + Barrera + Berma + 4 Carriles + Berma +

Barrera):0,20 m + 2,50 m + 0,40 m + 14,40 m + 0,40 m (zona constante)

Canto total del tablero : 5.34m - 6.40m

Canto de losa inferior : 0,80 – 0,89 (Variable de Alma lateral a Alma central)

Distancia entre el eje del muro central y el muro lateral: 20,325

Nº de vigas longitudinales : 3 Espesor alma-viga lateral : 1,00 m Espesor alma viga central : 1,85 m

Tipo de estribo 1 : Cerrado Pilotado Tipo de estribo 2 : Cerrado Pilotado

Datos geográficos y climáticos:

Localización del puente : Lima Cota Avenida T = 175 años : - 21,15 m

Cota Socavación = 14,84 m estribo Derecho y 15,32 estribo Izquierdo

Clases de exposición:

Tablero: Se consideran condiciones ambientales severas para minimizar el posible deterioro y labores de conservación posteriores. Se dispondrá correcta impermeabilización en el tablero de manera que las sales fundentes no afecten a la durabilidad de la estructura.

Cimientos: La cimentación será pilotada con estribo cerrado cuya base de cimentación se localice en la base del cauce. Se dispondrán muros cerrados con aletas en vuelta para contener las tierras de las excavaciones

Características de los materiales:

Hormigones:

: f'c = 500 kg/cm2Vigas-Almas Postensadas : f'c = 500 kg/cm2Losa inferior de Tablero Veredas : f'c = 280 kg/cm2: f'c = 280 kg/cm2Alzados de estribos **Pilotes** : f'c = 280 kg/cm2

Aceros:

: fy = 4200 kg/cm - ASTM A706 G-60Pasivo Activo : fy = 19000 kg/cm - ASTM A415 G-270

Datos geotécnicos:

Línea de Apoyo Tipo De Cimentación:

E-1: Profunda Pilotes Ø1500 mm E-2: Profunda Pilotes Ø1500 mm

Apoyos:

Apoyos en E-1 de núcleo de plomo LRB amortiguamiento efectivo > 30%. Apoyos en E-1 de núcleo de plomo LRB amortiguamiento efectivo > 30%

Datos sísmicos:

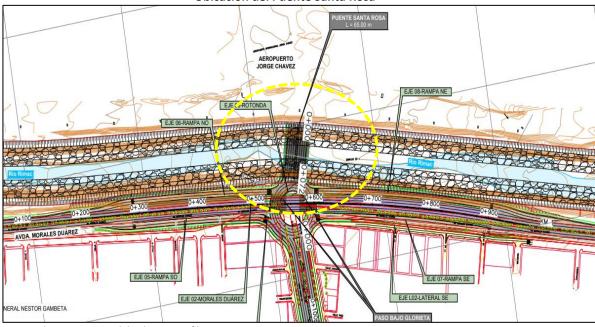
Aceleración sísmica : 0.589 g. Obtenido del Mapa de isoaceleraciones del Manual de

Puentes del Perú AASHTO 2014 y del anejo específico.

Suelo : Tipo C

Zona sísmica : Moderada - elevada. Según AASTHO no es recomendable usar

factor de modificación de respuesta por lo tanto R =1,00.



Viceministerio PROVI de Transportes NACIOI

Empuje de tierras en situación sísmica se obtiene por la formulación de Mononobe-Okabe

Ubicación del Puente Santa Rosa

Fuente: Plano vista general de planta y perfil.

Diseño de la Rotonda

Las características de la Rotonda son las siguientes:

Diseño geométrico:

Nº de vanos del puente : 1

Luces del puente : 25.80m (29,09 m en el desarrollo del eje)

Ancho superior del tablero : 32.17m

Distribución del ancho (Barandilla + Vereda + Barrera + Berma + 4 Carriles + Berma + Barrera):0,20 m + (2,50 m - 7,30 m) + 0,40 m + 0,50 m + 16,00 m + 0,50 m + 0,40 m + (0,00 m - 7,30 m)

11,67m)

Canto total del tablero : 1.30m + 0,25m (Viga +Losa + encofrado)

Canto de vigas transversales : 1,05 m (Riostra de apoyos)

Separación de vigas Transversales : luz del puente.

Nº de vigas transversales : 2

Tipo de estribo 1 : Muro en U
Tipo de estribo 2 : Muro en U

Datos geográficos y climáticos:

Localización del puente : Región Callao - Lima

Cota Avenida T = 175 años : - m

Clases de exposición:

Tablero: Se consideran condiciones ambientales severas para minimizar el posible deterioro y labores de conservación posteriores.

Eco. ISABEL HERNÁMDEZ COTRINA

Se dispondrá correcta impermeabilización en el tablero de manera que las sales fundentes no afecten a la durabilidad de la estructura.

Cimientos: La cimentación será directa sobre una losa de cimentación común para los dos estribos de la estructura.

Características de los materiales:

Hormigones:

Vigas Postensadas : f'c = 420 kg/cm2 Losa de Tablero : f'c = 280 kg/cm2Placa Prefabricada : f'c = 280 kg/cm2 : f'c = 280 kg/cm2Veredas Alzados de estribos : f'c = 280 kg/cm2

Aceros:

Pasivo : fy = 4200 kg/cm2 ASTM A706 G-60 Activo : fy = 19000 kg/cm2 ASTM A415 G-270 Estructural en chapas: fy = 2800 kg/cm2 ASTM A709 G-36

Datos geotécnicos:

Línea de Apoyo Tipo de Cimentación:

E-1: Directa E-2: Directa

Apoyos:

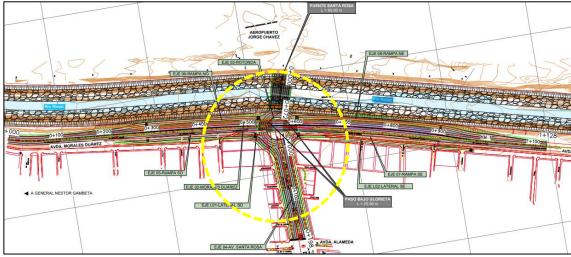
Apoyos en estribos, de neopreno con núcleo de plomo, con amortiguamiento efectivo del 35%.

Datos sísmicos:

Aceleración sísmica: 0.60 g. Obtenido del Mapa de isoaceleraciones del Manual de Puentes del Perú AASHTO 2014.

Suelo : Tipo C.


Zona sísmica moderada - elevada. Según AASTHO no es recomendable usar factor de modificación de respuesta por lo tanto R =1,00.



Fuente: Plano vista general de planta y perfil.

Accesos:

Av. Morales Duárez : 2 calzadas x ancho de calzada 7.20 m x carril de 3.60 m x 2 carriles. Av. Santa Rosa : 2 calzadas x ancho de calzada 10.80 m x carril de 3.60 m x 3 carriles.

Diseño vial del Paso a Desnivel

Las características del paso a desnivel son las siguientes:

Longitud : 1128 m Galibo (Cruce puente) : 5.50 m

Condición estructural : Pavimento rígido de 350 kg/cm2

Ancho de Calzada : 7.20 m (por sentido)

Número de Carriles : 2 por sentido

Ancho de Carril : 3.60 m
Ancho de Berma Interna : 0.50 m
Ancho de Berma Externa : Variable
Velocidad Directriz : 80 km/h

Separador central : barrera metálica doble

Condición estructural accesos : Pavimento rígido de 280 kg/cm2

La Tabla N° 14 muestra un resumen de los parámetros de diseño geométrico empleados en e presente Estudio Definitivo.

OLAS VILLASECA CARRAS Reg. CHP Nº 29943

Página 32

Consultores

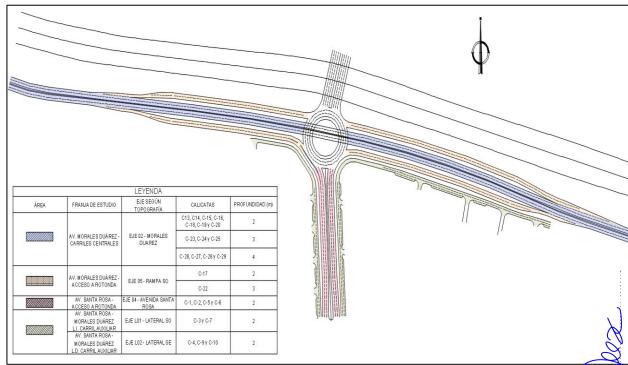
Tabla N° 13: Resumen de parámetros de diseño geométrico

	SEPARADOR CENTRAL	3.85	09'0	Sin separador	Variable; mínimo 3.00	Sin separador	Sin separador
	VEREDAS	2.50	1.20	2.50	2.50	2.50	Variable
ANCHOS EN M	BERMA	0:20	0:20	0:20	0:20	0:20	0.00
A	BERMA	0:20	2.60	0:20	0:20	0:20	0.00
	CARRIL	3.60	3.60	4.00	3.60	3.60	3.00 (4.00 m en el giro Morales Duárez – Santa Rosa; 4.50 m en el giro Santa Rosa – Morales Duárez
	Nº CARRILES POR CALZADA	4	2	4	3	2	2 (reducciones a 1 carril en las curvas entre Morales Duárez y Santa Rosa)
	Nº CALZADAS	2	2	1	2	1	1
RASANTE	KV CÓNCAVO MÍNIMO	Sin acuerdos	3200	2000	1000	2700	1760
RAS	KV CONVEXO MÍNIMO	Sin acuerdos	4900	2000	1000	3500	2435
	PENDIENTE MÍNIMA	0.50%	0.65%	0.50%	0.25%	0.12%	0.04%
	PENDIENTE MÁXIMA	0.50%	4.76%	0.50%	2.00%	3.78%	1.00%
	RADIO MÍNIMO (M)	Sin arcos	1200.00	24.00	Sin arcos	250.00	24.50
	VELOCIDAD DISEÑO (KM/H)	50	09	30	20	30	30
	VIALES	Puente Rímac	Morales Duárez	Rotonda	Av. Santa Rosa	Rampas	Viales laterales

Fuente: Estudio de Topografía.

Informe Final Estudio de Verificación de Viabilidad Estudio Dennisconscinação Callao" (143-2018-MTC/20.2) Eco. ISABEC HERNÁNDEZ COTRINA

Rotonda y Paso a Desnivel, Región Callao" (143-2018-MTC/20.2) Eco. ISABEC HERNÁNDEZ COTRINA

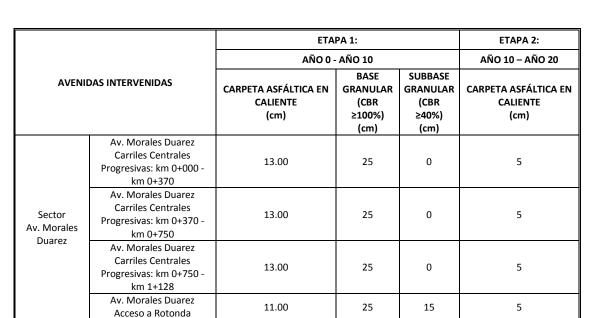

ESPECIALISTA EVALVACIÓN ECONÓMICA

JEFE DE ESTUDIO

Reg. CEP N° 03476 Estudio Defini Regue DHO Nati 2994 Burucción del Puente Santa Rosa, Ages 6944

NICOLAS VILLASECA CARRASCO

Respecto al estudio de diseño de pavimentos: Se ha sectorizado el área en estudio tal como se grafica a continuación:


Fuente: Estudio de Suelos, Canteras, Fuentes de Agua y Pavimentos.

Se ha efectuado el diseño para un periodo de 20 años, para las alternativas de pavimento flexible y rígido. En los siguientes cuadros se exponen las estructuras obtenidas.

Tabla N° 14: PAVIMENTO FLEXIBLE (20 Años)

		ETA	PA 1:		ETAPA 2:
		AÑO 0	- AÑO 10		AÑO 10 – AÑO 20
AVENID	AS INTERVENIDAS	CARPETA ASFÁLTICA EN CALIENTE (cm)	BASE GRANULAR (CBR ≥100%) (cm)	SUBBASE GRANULAR (CBR ≥40%) (cm)	CARPETA ASFÁLTICA EN CALIENTE (cm)
	Acceso a Rotonda Av. Santa Rosa Progresivas: km 0+140 - km 0+200	9.00	20	15	5
Sector	Acceso a Rotonda Av. Santa Rosa Progresivas: km 0+000 - km 0+140	9.00	20	15	5
Av. Santa Rosa	Av. Santa Rosa - Av. Morales Duarez Lado Izquierdo - Carril Auxiliar	7.00	15	22	5
	Av. Santa Rosa - Av. Morales Duarez Lado Derecho - Carril Auxiliar	7.00	15	15	5

Fuente: Estudio de Suelos, Canteras, Fuentes de Agua y Pavimentos.

Tabla N° 15: PAVIMENTO RÍGIDO (20 Años)

AVENIDAS INTERVENIDAS	SECTOR	RESISTENCIA A LA COMPRESIÓN DEL CONCRETO (kg/cm²)	LOSA DE CONCRETO	SUBBASE GRANULAR (cm)
	Acceso a Rotonda Av. Santa Rosa Progresivas: km 0+140 - km 0+200	280	25	15.0
Av. Santa Rosa	Acceso a Rotonda Av. Santa Rosa Progresivas: km 0+000 - km 0+140	280	25	15.0
	Av. Santa Rosa - Av. Morales Duarez Lado Izquierdo - Carril Auxiliar	280	25	15.0
	Av. Santa Rosa - Av. Morales Duarez Lado Derecho - Carril Auxiliar	280	25	15.0
	Av. Morales Duarez Carriles Centrales Progresivas: km 0+000 - km 0+370	350	32	15.0
Av. Morales Duárez	Av. Morales Duarez Carriles Centrales Progresivas: km 0+370 - km 0+750	350	32	15.0
	Av. Morales Duarez Carriles Centrales Progresivas: km 0+750 - km 1+128	350	32	15.0
	Av. Morales Duarez Acceso a Rotonda	350	25	15.0

Fuente: Estudio de Suelos, Canteras, Fuentes de Agua y Pavimentos.

Debido a su alta resistencia y menores actividades en el mantenimiento, se recomienda el empleo del pavimento rígido.

ULLASECA CARRASCO

Viceministerio PROVIAS de Transportes NACIONAL

En el caso de los Terraplenes de los nuevos pavimentos, éstos se podrán colocar sobre el actual pavimento, cuando la altura entre la subrasante del nuevo pavimento y la rasante del actual pavimento sea como mínimo 0,50m. Si la altura es menor, se deberá retirar la carpeta asfáltica existente para colocar los terraplenes sobre la base granular existen.

c) Diferencias respecto a la viabilidad

La concepción de este Estudio Definitivo se ha basado en las actuaciones contenidas en el Estudio de Factibilidad aprobado en 26/05/2017 con código SNIP № 365143.

El concepto del Estudio Definitivo (nuevo puente sobre el Rímac, paso inferior de Morales Duárez, rampas de conexión desde esta avenida, rotonda de conexión de las rampas, puente y avenida Santa Rosa) es el que se estableció en el Estudio de Factibilidad, por lo que se ha mantenido la funcionalidad del intercambio vial.

Las diferencias en cuanto a diseño geométrico se han basado, además de la definición más pormenorizada de todos los detalles de diseño, en cambios de sección transversal respecto a lo indicado en el Estudio de Factibilidad. Las modificaciones más significativas son las siguientes:

♦ Rotonda:

- ♦ Aumento del diámetro interior de la rotonda de 31.20 m a 48.00 m
- ♦ Aumento del diámetro exterior de la rotonda de 60.00 m a 80.00 m
- ♦ Aumento de la anchura de los carriles de 3.60 m a 4.00 m
- ♦ Disminución de la berma interior de 0.60 m a 0.50 m
- ♦ Disminución de la berma exterior de 1.00 m a 0.50 m
- ♦ Incorporación de veredas de 2.50 m de anchura sobre el paso inferior (ausentes en el Estudio de Factibilidad).

♦ Paso inferior Morales Duárez:

- Disminución de la anchura de la berma interior de 1.20 m a 0.50 m
- ♦ Aumento de la berma exterior de 1.80 m a 2.60 m
- Disposición de barreras New Jersey entre la calzada y las veredas
- ◆ Se mantiene la anchura neta de las veredas (1.20 m).

♦ Puente sobre el Rímac:

- Disposición de berma interior de 0.50 m de anchura (inexistente en Factibilidad)
- Disminución de berma exterior de 1.20 m a 0.50 m
- ♦ Aumento de la anchura de veredas de 1.60 m a 2.50 m
- ◆ Ampliación del separador central de 1.40 m a 3.85 m, debido al cambio de tipología de puente
- Cambio en la alineación del puente para adaptarla a las previsiones de acceso a la ampliación del aeropuerto

Eco. ISABEK HERNÁMDEZ COTRINA ESPECIALISTA EVALVÁCIÓN ECONÓMICA Reg. CEP Nº 03476

Avenida Santa Rosa:

- Incorporación de bermas (interior y exterior) de 0.50 m (ausentes en Factibilidad)
- Incorporación de veredas exteriores de 2.50 m de anchura (inexistentes en Factibilidad), con inclusión de barreras New Jersey entre calzadas y veredas
- Disminución del separador central de 7.80 m a 3.00 m.

Rampas:

- Incorporación de veredas exteriores de 2.50 de anchura (inexistentes en Factibilidad en las del lado Sur y de 1.60 m en el lado Norte)
- Incorporación de bermas a ambos lados de 0.50 m de anchura (inexistentes en Factibilidad).

Vías laterales:

Inclusión de un separador lateral de 1.00 m entre las vías de servicio y los muros que sostienen las rampas (separador inexistente en el Estudio de Factibilidad).

Un aspecto a destacar en este Estudio Definitivo es la incorporación de itinerarios para peatones, mediante la adopción de veredas en todos los viales, de tal forma que se permita la continuidad en los ejes Norte-Sur (puente Rímac – Santa Rosa) y Oeste-Este (Morales Duárez). Dicha continuidad no se había incluido en el Estudio de Factibilidad.

6

INVERSION

a) Según viabilidad

El monto total de Inversión fue de S/. 76´764,983.30. Esta cifra incluye costos de la obra, gastos generales, utilidad, IGV, supervisión, valor del expediente técnico e Interferencias.

Además, se presenta el presupuesto por cada alternativa de solución técnica según el tipo de construcción del puente.

Tabla N° 16: Costos total inversión según alternativa seleccionada

Rubros	Puente metálico	Paso a Desnivel + Rotonda Morales Duárez	Ingreso Aeropuerto	Costo Total
Costo Directo de Obra	8,733,883.26	20,419,308.05	9,165,273.88	38,318,465.19
Gastos Generales (30%)	2,620,164.98	6,125,792.42	2,749,582.16	11,495,539.56
Utilidad 10%)	873,388.33	2,041,930.81	916,527.39	3,831,846.53
Sub Total	12,227,436.56	28,587,031.27	12,831,383.43	53,645,851.26
IGV	2,200,938.58	5,145,665.63	2,309,649.02	9,656,253.23
Costo Total de Inversión	14,428,375.15	33,732,696.90	15,141,032.45	63,302,104.50
Estudio Definitivo (8%)	1,154,270.01	2,698,615.75	1,211,282.60	5,064,168.3
Supervisión (10%)	1,442,837.51	3,373,269.69	1,514,103.24	6,330,21 0.44
Interferencias	474,422.94	1,100,233.58	493,843.48	2,068,500.00
Presupuesto Total	17,499,905.61	40,904,815.92	18,360,261.77	76,764,983.30

Fuente. Estudio de Factibilidad.

Costos de mantenimiento

Los costos de mantenimiento se refieren al Mantenimiento Rutinario del puente y sus accesos como de la infraestructura que la compone.

Para la Alternativa N° 03 (Puente Tipo Arco Metálico) el costo de mantenimiento rutinario fue de S/.92,953.81 y mantenimiento periódico de S/. 1,169,155.04 a precios de mercado.

Para efectos del cálculo de los precios económicos se utilizaron los siguientes factores:

+ Costo de Construcción: 0.79+ Costo de Mantenimiento: 0.75

b) Según Estudio Definitivo

El monto Inversión integral del Proyecto correspondiente al Expediente Técnico, se ha incrementado a S/. 380´349,120.34 Soles. Esta cifra incluye los costos directos de la obra, gastos generales, utilidad, IGV, costo del expediente técnico, costos de Supervisión y los costos indirectos: costos por Interferencias (Interferencias eléctricas y telecomunicaciones, y

AS VILLASECA CARRASCO REG. CIP Nº 29943

Viceministerio PROVIAS de Transportes NACIONAL

reubicación de red de gas), PAC (Plan de Afectaciones y Compensaciones) y PMA (Plan de Monitoreo Arqueológico), los sustentos técnicos se presentan en los Anexos N° II.

A continuación, se detalla el presupuesto total, según partidas principales y a precios de mercado (expresados en Soles).

Tabla N° 17: Costo de inversión

Rubros	Costo Total	
TRABAJOS PRELIMINARES		286,829.79
PUENTE SANTA ROSA		25,997,289.59
TRABAJOS PRELIMINARES		9,585.02
MOVIMIENTO DE TIERRAS		8,560.66
PAVIMENTOS		340,721.93
SUBESTRUCTURA		10,932,060.33
SUPERESTRUCTURA		11,778,730.57
VARIOS		1,177,781.35
TRANSPORTE		1,749,849.73
OBRAS DE PROTECCIÒN		118,980,325.45
ROTONDA SANTA ROSA		10,988,973.10
ACCESOS		51,186,360.29
SEÑALIZACIÓN Y SEGURIDAD VIAL		3,267,907.72
PROTECCION AMBIENTAL		261,109.42
ARQUITECTURA Y PAISAJISMO		4,175,078.02
Costo Directo de Obra		215,143,873.38
Gastos Generales	14.99%	32,257,481.55
Utilidad	10%	21,514,387.34
Sub Total		268,915,742.27
IGV	18%	48,404,833.61
Costo Total de Inversión		317,320,575.88
Estudio Definitivo	8%	25,385,646.07
Supervisión 10%		31,732,057.59
Interferencias (Rehubicación electrica	3,220,938.96	
telecounicaciones y red de gas)	3,220,330.30	
PAC (Plan de afectaciones y Compensa	2,610,769.06	
PMA (Plan de Monitoreo Arqueològico)		79,132.79
Presupuesto Total		380,349,120.34

Elaboración: El Consultor.

Costos de mantenimiento

Los costos de mantenimiento se refieren al Mantenimiento Rutinario del puente y sus accesos como de la infraestructura que la compone.

El costo de mantenimiento rutinario es de S/. 342,905.23 y mantenimiento periódico de S/. 686,947.79 a precios de mercado.

Para efectos del cálculo de los precios económicos se utilizó el siguiente factor de corrección:

OLAS VILLASECA CARRAS Reg. CIP Nº 29943

+ Costo de Mantenimiento: 0.75

Tabla N° 18: Costos de mantenimiento

Costos de mantenimiento			
A precios financieros		A precios sociales	
Rutinario	Periódico	Rutinario	Periódico
342,905.23	1,686,947.79	257,178.92	1,265,210.84
Factor de Corrección	0.75		

Fuente: Informe de Conservación rutinaria y periódica.

a) Análisis comparativo de los costos de inversión del Estudio Definitivo versus La Viabilidad del proyecto

En la Tabla 19, se presenta la comparación del monto de inversión previsto en el estudio de factibilidad versus el del Estudio Definitivo, donde se observa que el incremento del costo directo de la obra es del 561.46% respecto a la viabilidad del proyecto, con referencia al costo incluyendo gastos generales, utilidad e IGV, costo por el expediente técnico, costos por supervisión e Interferencias, el costo total tiene un incremento de 395.47%.

Tabla N° 19: Cuadro comparativo respecto a la viabilidad

Detalle	De Viabilidad	Estudio Definitivo
Costo de inversión	76,764,983.30	380,349,120.34
Variación respecto a la viabilidad		303,584,137.04
Variación porcentual		395.47%

Elaboración: El Consultor.

ECO. ISABÉL HERNÁNDEZ COTRINA ESPECIALISTA EVALVÁCIÓN ECONÓMICA Reg. CEP N° 03476

Tabla N° 20: Actividades incluidos en el expediente técnico

Rubros	Costo Total
TRABAJOS PRELIMINARES	286,829.79
PUENTE SANTA ROSA	25,997,289.59
TRABAJOS PRELIMINARES	9,585.02
MOVIMIENTO DE TIERRAS	8,560.66
PAVIMENTOS	340,721.93
SUBESTRUCTURA	10,932,060.33
SUPERESTRUCTURA	11,778,730.57
VARIOS	1,177,781.35
TRANSPORTE	1,749,849.73
OBRAS DE PROTECCIÓN	118,980,325.45
ROTONDA SANTA ROSA	10,988,973.10
ACCESOS	51,186,360.29
SEÑALIZACIÓN Y SEGURIDAD VIAL	3,267,907.72
PROTECCION AMBIENTAL	261,109.42
ARQUITECTURA Y PAISAJISMO	4,175,078.02
Costo Directo de Obra	215,143,873.38

Elaboración: El Consultor.

Nota: Los costos directos respecto a la factibilidad tiene un incremento de 516.46%, esto debido a que en el expediente técnico se está incluyendo las obras por encauzamiento y las diferencias en cuanto a diseño geométrico, además de la definición más pormenorizada de todos los detalles de diseño, en cambios de sección transversal respecto a lo indicado en el Estudio de Factibilidad. Mayor detalle visualizar la siguiente página.

7 JUSTIFICACIÓN

Del análisis de los Ítems ya descritos, se desarrollará la justificación de los cambios sustanciales y no sustanciales que se hayan dado en el expediente técnico.

El concepto del Estudio Definitivo (nuevo puente sobre el Rímac, paso inferior de Morales Duárez, rampas de conexión desde esta avenida, rotonda de conexión de las rampas, puente y avenida Santa Rosa) es el que se estableció en el Estudio de Factibilidad, por lo que se ha mantenido la funcionalidad del intercambio vial.

Las diferencias en cuanto a diseño geométrico se han basado, además de la definición más pormenorizada de todos los detalles de diseño, en cambios de sección transversal respecto a lo indicado en el Estudio de Factibilidad. Las modificaciones más significativas son las siguientes:

♦ Rotonda:

- Aumento del diámetro interior de la rotonda de 31.20 m a 48.00 m
- Aumento del diámetro exterior de la rotonda de 60.00 m a 80.00 m
- Aumento de la anchura de los carriles de 3.60 m a 4.00 m
- Disminución de la berma interior de 0.60 m a 0.50 m
- Disminución de la berma exterior de 1.00 m a 0.50 m
- Incorporación de veredas de 2.50 m de anchura sobre el paso inferior (ausentes en el Estudio de Factibilidad).

♦ Paso inferior Morales Duárez:

- Disminución de la anchura de la berma interior de 1.20 m a 0.50 m
- Aumento de la berma exterior de 1.80 m a 2.60 m
- Disposición de barreras New Jersey entre la calzada y las veredas
- Se mantiene la anchura neta de las veredas (1.20 m).

♦ Puente sobre el Rímac:

- Disposición de berma interior de 0.50 m de anchura (inexistente en Factibilidad)
- Disminución de berma exterior de 1.20 m a 0.50 m
- Aumento de la anchura de veredas de 1.60 m a 2.50 m
- Ampliación del separador central de 1.40 m a 3.85 m, debido al cambio de tipología de puente
- Cambio en la alineación del puente para adaptarla a las previsiones de acceso a la ampliación del aeropuerto

♦ Avenida Santa Rosa:

- Incorporación de bermas (interior y exterior) de 0.50 m (ausentes en Factibilidad)
- Incorporación de veredas exteriores de 2.50 m de anchura (inexistentes en Factibilidad), con inclusión de barreras New Jersey entre calzadas y veredas

AS VILLASECA CARRASCO Reg. CIP Nº 29943

• Disminución del separador central de 7.80 m a 3.00 m.

Rampas:

- Incorporación de veredas exteriores de 2.50 de anchura (inexistentes en Factibilidad en las del lado Sur y de 1.60 m en el lado Norte)
- Incorporación de bermas a ambos lados de 0.50 m de anchura (inexistentes en Factibilidad).

Vías laterales:

• Inclusión de un separador lateral de 1.00 m entre las vías de servicio y los muros que sostienen las rampas (separador inexistente en el Estudio de Factibilidad).

Un aspecto a destacar en este Estudio Definitivo es la incorporación de itinerarios para peatones, mediante la adopción de veredas en todos los viales, de tal forma que se permita la continuidad en los ejes Norte-Sur (puente Rímac – Santa Rosa) y Oeste-Este (Morales Duárez). Dicha continuidad no se había incluido en el Estudio de Factibilidad.

EVALUACIÓN 8

a) Según viabilidad

La evaluación social planteada para la Construcción del Puente Santa Rosa, Accesos, Rotonda y Paso a Desnivel se sigue en base al siguiente procedimiento:

- Se evaluó dos (2) vías de forma integral por el proyecto en estudio:
 - La vía urbana de ingreso al AIJCH en la Av. Elmer Faucett, estimando la longitud, con problemas de congestión de vehículos que reduce la velocidad deseada de viaje; incrementando los costos de transporte.
 - La nueva vía del puente con la Av. Santa Rosa asignada un tráfico desviado, por la que se espera que los vehículos circulen sin dificultades con mejores velocidades de operación.
- Se calculó los costos de usuarios (tiempo de viaje) de la situación actual con el tráfico total "Tt" que circula por esta vía. Se emplea una velocidad "Vsp" resultado de la congestión de tráfico existente. Obteniéndose un costo económico total para la situación sin proyecto.
- Del tráfico "Tt" una parte será reasignado hacia la construcción del nuevo puente Santa Rosa. Como esta vía es nueva y carga el tráfico desviado, su velocidad deseada será mayor sin congestión. Se calculó los costos de usuarios (tiempos de viaje) y costos de capital (inversión + mantenimiento con proyecto), resultando el costo económico total para situación con proyecto.

- La parte del tráfico remanente que seguirá circulando por la Av. Elmer Faucett, tendrá una menor congestión (y un aumento de su velocidad de recorrido), para estos usuarios también se calcula sus costos (tiempos de viaje) incorporándolos a los costos calculados en el punto anterior.
- La diferencia entre los costos económicos para cada situación representa el ahorro obtenido por la presencia de este nuevo puente y sus accesos. Es decir:

Costo Económico de la situación con Ahorro generado Costo Económico de la situación proyecto, para el tráfico desviado al por construcción sin proyecto, para la Avenida Puente Santa Rosa (tiempo de viaje y del Puente Faucett (tiempo de viaje) costos de capital) y el tráfico remanente en la Avenida Faucett (tiempo de viaje)

- Los supuestos que se han considerado en la evaluación son los siguientes:
 - En la situación sin proyecto los vehículos que transitan por la avenida Elmer Faucett se desplazan a una velocidad promedio de 29 km/h. (el estudio de tráfico estima como velocidad máxima de recorrido 36 km/h y mínima de 22.67 km/h).
 - Como velocidad con proyecto los vehículos que se desviarán de la avenida Elmer Faucett a la Avenida Santa Rosa una vez el proyecto inicie operaciones recorrerán dicha avenida a una velocidad promedio de 40 km/h. (tomando un escenario conservador, considerando que el Reglamento Nacional de Transito indica que las Avenidas pueden presentar velocidades máximas de 60 km/h y mínimas de 30 km/h)
 - Como velocidad con proyecto los vehículos remanentes en la avenida Elmer Faucett al existir menos flujo vehicular en dicha vía aumentarán su velocidad de su desplazamiento a 36 km/h. (llegando a su máxima velocidad de operación con sus características geométricas actuales).

Se consideró que el aumento de velocidades tiene efecto en 1.3 Kilómetros (desde la intersección de las avenidas Quilca con Elmer Faucett hasta el cruce de la Argentina con Elmer Faucett).

Resultados de la evaluación económica:

Los resultados muestran indicadores económicos socialmente rentables, alternativa seleccionada: Alt. N° 03., con un VANE (9.0%) positivo de S/. 13, 818,825.13 Millones de Nuevo Soles a precios sociales, una TIRE (%) igual a 11.90%.

Tabla N° 21: Indicadores económicos (Millones de S/. a precios sociales)

Descripción	VANE (9.0%)	TIRE	
Alternativa N° 03	13,819	11.90%	

Fuente: Estudio de Factibilidad.

El flujo económico del proyecto integral, están mostrados en el cuadro siguiente donde la evaluación determina su rentabilidad social sobre la base de la inversión a realizarse en la ejecución de la obra.

Tabla N° 22: Flujo económico - Alternativa seleccionada

Dariada	۸۵۵	Inversion	Mantanimianta	Beneficios	Beneficios
Periodo	Año	Inversion	Mantenimiento	Estimados	Netos
0	2017	3,032,216.84			-3,032,216.84
U	2018	57,612,119.97			-57,612,119.97
1	2019		69,715	7,163,207.18	7,093,491.82
2	2020		69,715	7,303,515.85	7,233,800.49
3	2021		69,715	7,446,653.94	7,376,938.59
4	2022		69,715	7,592,683.23	7,522,967.88
5	2023		1,146,944	7,741,667.12	6,594,722.91
6	2024		69,715	7,893,670.65	7,823,955.29
7	2025		69,715	8,048,760.62	7,979,045.26
8	2026		69,715	8,207,005.61	8,137,290.25
9	2027		69,715	8,368,476.06	8,298,760.70
10	2028		1,146,944	8,533,244.33	7,386,300.13
11	2029		69,715	8,701,384.77	8,631,669.42
12	2030		69,715	8,872,973.81	8,803,258.45
13	2031		69,715	9,048,090.00	8,978,374.64
14	2032		69,715	9,226,814.13	9,157,098.77
15	2033		1,146,944	9,409,229.30	8,262,285.10
16	2034		69,715	9,595,421.00	9,525,705.64
17	2035		69,715	9,785,477.23	9,715,761.87
18	2036		69,715	9,979,488.55	9,909,773.19
19	2037		69,715	10,177,548.24	10,107,832.88
20	2038		1,146,944	28,573,053.39	27,426,109.19
				VANS	13,818,825.13
				TIRS	11.90%

Fuente: Estudio de Factibilidad.

b) Según expediente técnico

Parámetros:

La Evaluación Económica para el presente informe se efectuará, a través del uso de los siguientes parámetros:

La Tasa Social de Descuento se ha actualizado según la Directiva Nº 001-2019-EF/63.01, Anexo 11: Parámetros de Evaluación Social TSD= 8%.

- Características Técnicas de los tramos de la carretera en estudio, en su situación "sin proyecto" y "con proyecto".
- Las Políticas de Mantenimiento para la condición actual o "sin proyecto" y "con proyecto"; se mantenimiento según la viabilidad.
- Estudio de tráfico actualizado: tráfico Normal, y para la situación "con proyecto" incluyendo el tráfico Generado y desviado.
- Periodo de análisis de la Evaluación de 20 años.
- Ejecución de obras: 2022 2023
- Operación de la vía: 2024.
- Todos los análisis se efectuarán en soles
- Costos de Inversión y costos por operación vehicular y el ahorro de tiempo de viaje de los usuarios, de acuerdo a la información de mercado.
- Con esta información, se determinaron los Indicadores de Rentabilidad: La Tasa Interna de Retorno (TIR), el Valor Actual Neto o utilidad extraordinaria que se pretende alcanzar (VAN) y relación beneficio/costo B/C.

La metodología utilizada es la misma con el cual se dio la viabilidad, el cual se puede visualizar en el Excel de evaluación económica.

Resultados de la evaluación económica:

Los resultados de la evaluación arrojan indicadores positivos, con un VANE de S/. 46, 135, 128 a precios sociales, una TIRE (%) igual a 9.72%.

Tabla N° 23: Indicadores económicos

(S/. a precios sociales)

Descripción	VANE (8.0%)	TIRE	
Indicadores de rentabilidad	46,135,128	9.72%	

Fuente: Estudio de Factibilidad.

		Tabla 14 2-1. Evaluació			
Periodo	Año	Inversión	Mantenimiento	Beneficios Estimados	Beneficios Netos
0	2022	150,237,902.53	0	0	-150,237,902.53
0	2023	150,237,902.53	0	0	-150,237,902.53
1	2024	0	257,179	30,507,535.19	30,250,356.26
2	2025	0	257,179	30,995,520.02	30,738,341.10
3	2026	0	257,179	31,497,890.90	31,240,711.97
4	2027	0	257,179	32,015,442.27	31,758,263.34
5	2028	0	1,265,211	32,549,018.96	31,283,808.12
6	2029	0	257,179	33,099,519.29	32,842,340.36
7	2030	0	257,179	33,667,898.31	33,410,719.38
8	2031	0	257,179	35,146,795.42	34,889,616.49
9	2032	0	257,179	36,663,957.76	36,406,778.84
10	2033	0	1,265,211	38,222,508.34	36,957,297.50
11	2034	0	257,179	39,825,774.69	39,568,595.76
12	2035	0	257,179	41,477,309.55	41,220,130.63
13	2036	0	257,179	43,180,898.60	42,923,719.68
14	2037	0	257,179	44,940,606.62	44,683,427.70
15	2038	0	1,265,211	46,760,776.90	45,495,566.06
16	2039	0	257,179	48,646,069.56	48,388,890.64
17	2040	0	257,179	50,601,487.66	50,344,308.74
18	2041	0	257,179	52,530,268.37	52,273,089.45
19	2042	0	257,179	55,476,149.32	
20	2043	0	1,265,211	56,579,510.71	55,314,299.86
				VANS (TSD 8%)	46,135,128
				TIRS	9.72%

Elaboración: El Consultor.

Nota: El mantenimiento rutinario será anual y el mantenimiento periódico se aplicará al 5^{to} año.

Análisis de sensibilidad

La sensibilidad es la incidencia de las variaciones de los costos de inversión y de los beneficios en los resultados de los indicadores económicos. En este escenario el VANE soporta hasta una variación en 33% como aumento en el monto de inversión y en una disminución de 14% en los beneficios el VANE se haría negativo.

Tabla N° 25: Análisis de sensibilidad

Indicadores	Evaluación Base		Benef.
		33%	-14%
VAN (S/.)	46,135,128	0	0
TIR	9.72%	8.00%	8.00%
B/C	1	1	1

Elaboración: El Consultor.

Políticas de mantenimiento

El mantenimiento de la carretera se debe efectuar en función a lo señalado en el Manual de Carreteras, Mantenimiento o Conservación Vial del Ministerio de Transportes y Comunicaciones (marzo 2014). En este manual se establecen las pautas para efectuar el monitoreo del estado y comportamiento del pavimento, la calidad del pavimento al entrar en servicio, las tolerancias en las fallas que se pudieran presentar durante su servicio, así como las especificaciones técnicas para efectuar el mantenimiento de la vía. A continuación, se presentan los lineamientos importantes del manual.

Pavimentos flexibles

Niveles de servicio

Conforme lo señala el manual del MTC, los niveles de servicio al que debe llegar el pavimento flexible son resumido en las siguientes tablas:

Tabla N° 26: Niveles de servicio para calzadas de pavimento asfáltico

PARÁMETRO MEDIDA		NIVEL DE SERVICIO AUTOPISTA IMD > 4000
Piel de Cocodrilo	Porcentaje máximo de área con piel de cocodrilo	0%
Fisuras Longitudinales	Porcentaje máximo de área con fisuras mayores a 3mm de grosor	0%
· ·	Porcentaje máximo de área con fisuras entre 1 y 3mm de grosor	3%
Deformación por Deficiencia Estructural	Porcentaje máximo de área con hundimientos mayores que 25mm	0%
Ahuellamiento	Porcentaje máximo de área con ahuellamiento mayor que 12mm	0%
Reparaciones o Parchados	Porcentaje máximo de parches en mal estado	0%
Peladuras y Desprendimiento	Porcentaje máximo de áreas con peladuras	5%
r eladuras y Desprendimiento	Porcentaje máximo de áreas con desprendimientos	0%
Baches (Huecos)	Porcentaje máximo de áreas con baches (huecos)	0%
Fisuras Transversales	Porcentaje máximo de área con fisuras mayores a 3mm de grosor	0%
risulas fransversales	Porcentaje máximo de área con fisuras entre 1 y 3mm de grosor	2%
Desprendimiento de Bordes	Porcentaje máximo de longitud con desprendimiento de bordes	0%
Rugosidad Obra Nueva	Rugosidad característica del tramo (nuevo)	2.0 IRIc
Rugosidad Obra con Recapa Asfáltica	Rugosidad característica del tramo (con recapa asfáltica)	2.5 IRIC
Rugosidad Peridodo de Servicio	Rugosidad característica del tramo (periodo de servicio)	3.3 IRIc
Fricción Superficial	Coeficiente de fricción medido en pavimento mejorado	No menor 0.55

IRI característico (IRIc) a la confiabilidad de 95%. IRIc = IRIp + 1.645xds

IRIp = IRI promedio

ds = desviación estándar

Inventario de condición

Una vez puesto en servicio el pavimento se deberán establecer medidas para efectuar periódicamente el estado de condición del pavimento. Para tal efecto el manual del MTC, recomienda efectuar las siguientes tareas:

OLAS VILLASECA CARE

Información de referencia y formalizarlo en listas y formatos. Ésta incluye la codificación de la carretera, la calzada, los carriles y las bermas, así como los puntos de referencia. Esto permite tener un sistema de referencia completo y consistente, que vuelve a ser el sistema de referenciación de todos sus usuarios.

Identificar las características principales y los puntos particulares. Preparar los cronogramas y la logística de los inventarios siguientes. Contar con la información disponible (mapas, inventarios anteriores y otros).

En los pavimentos flexibles se deberán medir los deterioros y fallas, los que clasificarán en: fallas estructurales o fallas superficiales. Se deberán establecer los tipos de daños y causas que provocaron las fallas. Para tal efecto se establece las siguientes clasificaciones de fallas:

Tabla N° 27: Deterioro de los pavimentos asfaltados

CLASIFICAC IÓN DE LOS DETERIORO S	CÓDIG O DEL DETERI OR O FALLA	DETERIORO O FALLA	GRAVEDAD	
			1. Malla grande (>0.5m) sin material suelto	
	1	Piel de cocodrilo	2. Malla mediana (entre 0.3 y 0.5m) sin o con material suelto	-
			3. Malla pequeña (<0.3m) sin o con material suelto	
	2	Fisuras longitudinale s	1. Fisuras finas en las huellas del tránsito (ancho ≤1mm) 2. Fisuras medias corresponden a fisuras abiertas y/o ramificadas (ancho >1mm y ≤3mm) 3. Fisuras gruesas corresponden a fisuras abiertas y/o ramificadas (ancho >3mm). También se denominan grietas.	
Deterioros o fallas estructural	3	Deformación por deficiencia	Profundidad sensible al usuario <2cm. Profundidad entre 2cm y 4cm	
es		estructural	3. Profundidad >4cm	
	4	Ahuellamien to	 Profundidad sensible al usuario ≤6mm. Profundidad >6mm y ≤2mm 	
		10	3. Profundidad >12mm	٠
	Reparacio		1. Reparación o parchado para deterioros superficiales	
	5	s o	2. Reparación de piel de cocodrilo o de fisuras longitudinales, en buen estado	
		parchados	3. Reparación de piel de cocodrilo o de fisuras longitudinales en mal estado	
		Peladura y	1. Puntual sin aparición de la base granular (peladura superficial)	
	6	desprendimi ento	2. Continuo sin aparición de la base granular o puntual con aparición de la base granular	
			3. Continuo con aparición de la base granular	
Deterioros		Dachas	1. Diámetro <0.2m	
o fallas superficiale	7	Baches (Huacos)	2. Diámetro entre 0.2 y 0.5m	
s 8			3. Diámetro >0.5m	
	8	Fisuras transversales	1. Fisuras finas (ancho ≤ 1mm) 2. Fisuras medias corresponden a fisuras abiertas y/o ramificadas (ancho >1mm y ≤3mm)	
			 Fisuras gruesas corresponden a fisuras abiertas y/o ramificadas (ancho >3mm). También se denominan grietas. 	

Viceministerio PROVIAS de Transportes NACIONAL

Una vez establecidos los daños, se procederán a reparar las fallas conforme a lo establecido en las Especificaciones Técnica Generales para la Conservación Vial del MTC (versión marzo 2014).

Para tal fin se consideran dos tipos de conservaciones:

Las actividades de **Conservación Periódica**: etapa en la cual se efectúa el mantenimiento de la vía en forma periódica, con la finalidad de efectuar mejoras en la serviciabilidad de la vía.

Las actividades de **Conservación Rutinaria**: consiste en los mantenimientos rutinarios que se deben efectuar en toda la vía anualmente.

Mantenimiento periódico

Pavimento asfaltado (Carretera)

En las Especificaciones Técnicas del MTC se consideran en este mantenimiento las siguientes actividades:

Sec. 460 Recapeos asfálticos

Para un periodo de 20 años, el recapeo necesario para llegar con una serviciabilidad adecuada, según diseño, también debe incluirse como un mantenimiento periódico.

Mantenimiento rutinario

Pavimento asfaltado (Carretera)

Se consideran en este mantenimiento las siguientes actividades:

Sec. 401 Sellado de fisuras y grietas en calzada

Sec. 405 Sellado de fisuras y grietas en la berma

Sec. 410 Parchado superficial en calzada

Sec. 415 Parchado profundo en calzada

Sec. 425 Bacheo de bermas en material granular

Sec. 435 Parchado superficial de bermas con tratamiento asfáltico

Sec. 445 Parchado profundo de bermas con tratamiento asfáltico

En estas dos últimas actividades, es recomendable modificar en función al tipo de capa superficial que tienen las bermas, en este caso carpeta asfáltica.

Periodicidad de los mantenimientos

Al respecto se recomiendan los siguientes periodos, los cuales se deben ajustar a los resultados del seguimiento del estado de condición del pavimento, el mismo que se debe efectuar anualmente.

Mantenimiento periódico

A partir del quinto año es importante que anualmente se efectúen las reparaciones de fisuras o fallas que se presenten en los pavimentos flexibles o rígidos.

En el caso del pavimento flexible, según diseño, en al año 10 se debe efectuar un refuerzo, para lo cual se empleará mezcla asfáltica en caliente.

ECO. ISABEL HERNÁMDEZ COTRINA
SPECIALISTA EVALVACIÓN ECONÓMICA

Mantenimiento rutinario

Se efectúa anualmente y en forma constante.

Pavimentos rígidos

Niveles de servicio

Conforme lo señala el manual del MTC, los niveles de servicio al que debe llegar el pavimento son resumidos en las siguientes tablas:

Tabla N° 28: Niveles de servicio para calzadas de pavimento rígido

l'abia N 28: Niveles de servicio para caizadas de pavimento rigido						
PARÁMETRO	MEDIDA	NIVEL DE SERVICIO AUTOPISTA				
		IMD > 4000				
Desnivel entre Losas	Porcentaje máximo de longitud con desnivel ≥10mm	0%				
Fisuras Longitudinales	Porcentaje máximo de área con fisuras mayores a 3mm de grosor	0%				
	Porcentaje máximo de área con fisuras entre 1 y 3mm	3%				
Fisuras Transversales	Porcentaje máximo de área con fisuras mayores a 3mm de grosor	0%				
risuras fransversales	Porcentaje máximo de área con fisuras entre 1 y 3mm	2%				
Fisuras de Esquina	Porcentaje máximo de área con fisuras en esquina	0%				
Fisuras Oblicuas	Porcentaje máximo de área con fisuras mayores a 3mm de grosor	0%				
r isui as Oblicuas	Porcentaje máximo de área con fisuras entre 1 y 3mm	0%				
Reparaciones o Parchados	Porcentaje máximo de parches en mal estado	0%				
Despostillamiento de Juntas	Porcentaje máximo de área con despostillamiento de juntas	0%				
Desprendimiento	Porcentaje máximo de área con desprendimiento	0%				
Baches o Huecos	Porcentaje máximo de área con baches o huecos	0%				
Tratamiento Superficial o Carpeta Asfáltica	Porcentaje máximo de área con desprendimiento de tratamiento superficial o de la carpeta asfáltica	0%				
Rugosidad Obra Nueva	Rugosidad característica del tramo (nuevo)	2.0 IRIc				
Rugosidad Obra con Recapa Asfáltica	Rugosidad característica del tramo (con recapa asfáltica)	2.5 IRIc				
Rugosidad Peridodo de Servicio	Rugosidad característica del tramo (periodo de servicio)	3.3 IRIc				
Fricción Superficial	Coeficiente de fricción medido en pavimento mejorado	No menor de 0.55				

IRI característico (IRIc) a la confiabilidad de 95%. IRIc = IRIp + 1.645xds

IRIp = IRI promedio

ds = desviación estándar

<u>Inventario de condici</u>ón

Una vez puesto en servicio el pavimento se deberán establecer medidas para efectuar periódicamente el estado de condición del pavimento. Para tal efecto el manual del MTC recomienda efectuar las siguientes tareas:

Información de referencia y formalizarlo en listas y formatos. Ésta incluye la codificación de la carretera, la calzada, los carriles y las bermas, así como los puntos de referencia. Esto permite tener un sistema de referencia completo y consistente, que vuelve a ser el sistema de referenciación de todos sus usuarios.

Identificar las características principales y los puntos particulares. Preparar los cronogramas y la logística de los inventarios siguientes. Contar con la información disponible (mapas, inventarios anteriores y otros).

En los pavimentos rígidos se deberán medir los deterioros y fallas, los que clasificarán en: fallas estructurales o fallas superficiales. Se deberán establecer los tipos de daños y causas que provocaron las fallas. Para tal efecto se establece las siguientes clasificaciones de fallas:

Tabla N° 29: Deterioro o falla de los pavimentos rígidos

CÓDIGO	DETERIORO /FALLAS	GRAVEDAD	
		1. Sensible al usuario sin reducción de la velocidad	
1	Desnivel entre losas	2. Resulta en una reducción significativa de la velocidad	
		3. Resulta en una reducción drástica de la velocidad	
2	Fisuras longitudinales	1. Fisuras finas (ancho ≤1mm) 2. Fisuras medias, corresponden a fisuras abiertas y/o ramificadas, sin pérdida de mate (ancho >1mm y ≤3mm) 3. Fisuras gruesas, corresponden a fisuras abiertas y/o ramificadas, con pérdida de mate (ancho >3mm)	
		1. Fisuras finas (ancho ≤1mm)	
3	Fisuras transversales	2. Fisuras medias, corresponden a fisuras abiertas y/o ramificadas (ancho >1mm y ≤3mm)	
		3. Fisuras gruesas, corresponden a fisuras abiertas y/o ramificadas (ancho >3mm)	
	I	1. Solamente una esquina	
4	Fisuras de esquina	2. Dos esquinas quebradas	
		3. Más de dos esquinas quebradas	
		1. Fisuras finas (ancho ≤1mm)	
5	Fisuras oblicuas	2. Fisuras medias, corresponden a fisuras abiertas y/o ramificadas (ancho >1mm y ≤3mm)	
		3. Fisuras gruesas, corresponden a fisuras abiertas y/o ramificadas (ancho >3mm)	
	D	1. Puntuales (menor al 10% de la superficie de las losas afectadas)	
6	Reparaciones o parchados	2. Puntuales (entre el 10% y 30% de la superficie de las losas afectadas)	
		3. Continuas (mayor que el 30% de la superficie de las losas afectadas)	
		Fracturamiento o desintegración de bordes menor o igual que el 50% de la longitud dentro de los 5cm de la junta	
7	Despostillamiento de juntas	Fracturamiento o desintegración de bordes mayor que el 50% de la longitud dentro de los 5cm de la junta	
		3. Fracturamiento o desintegración hasta una distancia superior a 5cm de la junta	
		1. Pérdida del material menor al 10% de la superficie de las losas afectadas	
8	Desprendimiento	2. Pérdida del material entre el 10% y 30% de la superficie de las losas afectadas	
		3. Pérdida del material mayor al 30% de la superficie de las losas afectadas	
	9 Baches (huecos)	1. Diámetro <0.2m	
9		2. Diámetro entre 0.2 y 0.5m	
		3. Diámetro >0.5m	
	Tratamianta	1. Desprendimiento menor al 10% de la superficie de las losas afectadas	
10	Tratamiento superficial	2. Desprendimiento entre el 10% y 30% de la superficie de las losas a fectadas	
		3. Desprendimiento mayor al 30% de la superficie de las losas afectadas	

Una vez establecidos los daños, se procederán a reparar las fallas conforme a lo establecido en las Especificaciones Técnica Generales para la Conservación Vial del MTC (versión marzo 2014).

Para tal fin se consideran dos tipos de conservaciones:

Las actividades de **Conservación Periódica**: etapa en la cual se efectúa el mantenimiento de la vía en forma periódica, con la finalidad de efectuar mejoras en la serviciabilidad de la vía.

Las actividades de **Conservación Rutinaria**: consiste en los mantenimientos rutinarios que se deben efectuar en toda la vía anualmente.

Mantenimiento periódico

Para el pavimento rígido

En esta alternativa se deben considerar las siguientes actividades:

Sec. 550 Resellado de juntas y sellado de grietas en calzada y berma

Sec. 560 Reparación de losas de calzada y berma en espesor total

Sec. 562 Colocación de barras de transferencia de carga

Mantenimiento rutinario

Para el pavimento rígido

Sec. 501 Sellado de fisuras y grietas en calzada y berma

Sec. 510 Reparación de losas de calzada y berma en espesor parcial

Periodicidad de los mantenimientos

Al respecto se recomiendan los siguientes periodos, los cuales se deben ajustar a los resultados del seguimiento del estado de condición del pavimento, el mismo que se debe efectuar anualmente.

Mantenimiento periódico

A partir del quinto año es importante que anualmente se efectúen las reparaciones de fisuras o fallas que se presenten en los pavimentos flexibles o rígidos. En el caso de los pavimentos rígidos, cada dos años se debe cambiar los elementos que componen las juntas.

Mantenimiento rutinario

Se efectúa anualmente y en forma constante.

ECO. ISABÉL HERNÁNDEZ COTRINA SPECIALISTA EVALVACIÓN ECONÓMICA Rea. CEP Nº 03476

CONCLUSIONES Y RECOMENDACIONES

Conclusiones:

9

- a) La longitud total del proyecto "Construcción del Puente Santa Rosa, accesos, rotonda y paso a desnivel" es de 1.5 km aproximado, teniendo una longitud de accesos de 1.938km, longitud del puente 0.65m y de la rotonda 25.80m.
- b) El costo total del proyecto integral, según el estudio definitivo, asciende a S/. 380, 349, 120.34, tiene un incremento de 395.47% respecto a la viabilidad.
- c) Los costos están más altos respecto a la viabilidad debido a que no se estaba incluyendo obras por encauzamiento, el cual no estaba proyectado en la factibilidad.

Detalle	De Viabilidad	Estudio Definitivo
Costo de inversión	76,764,983.30	380,349,120.34
Variación respecto a la viabilidad		303,584,137.04
Variación porcentual		395.47%

- d) La metodología utilizada en la evaluación económica es la misma con el cual se declaró la viabilidad.
- e) La evaluación económica muestra indicadores positivos:

Indicadores	de rentabilidad
VANE	46,135,128
TIRS	9.72%

Recomendaciones:

Se recomienda la aprobación del Estudio Definitivo del Proyecto "Construcción del Puente Santa Rosa, Accesos, Rotonda y Paso a Desnivel, Región Callao".

10 ANEXOS

ECO. ISABÉL HERNÁNDEZ COTRINA ESPECIALISTA EVALVACIÓN ECONÓMICA Reg. CEP Nº 03476

ECO. ISABÉK HERNÁMDEZ COTRINA ESPECIALISTA EVALVÁCIÓN ECONÓMICA REG. CED Nº 03476

10.1 Anexo 01: Informe Técnico de Aprobación

FORMATO SNIP 09:

DECLARACIÓN DE VIABILIDAD DE PROYECTO DE INVERSIÓN PÚBLICA

			INFORMACIÓN DEL PIP			
NOMBRE DEL PI	P:			NTE SANTA ROSA, ACCESO	DS, ROTONDA	
CÓDIGO SNIP (nei DID.	365143	SO A DESNIVEL, REGION CALLAO			
	DEL PIP A PRECIOS DE	363143				
MERCADO (S/.)		76,764,	983			
		APROBA	DO POR:	OPI - TRANSPORTES		
	PERFIL	CON INF	ORME TÉCNICO N°:	1527-2016-MTC/09.02		
		FECHA:		12/12/2016		
NIVEL DE		APROBA				
ESTUDIOS DE	PREFACTIBILIDAD	CON INF	ORMETÉCNICO Nº:			
PREINVERSIÓN:		FECHA:				
		-	ADO POR:	UGP-PROVIAS NACIONA	\L	
	FACTIBILIDAD	CON INF	ORME TÉCNICO Nº:	13-2017-MTC/20.11.1 A.E	I.M	
	}	FECHA:		26/05/2017		
			VIABILIDAD			
INFORME TÉCNIC VIABILIDAD:	CO QUE RECOMIENDA LA		13-2017-MTC/20.	11.1 A.B.M		
VIABILIDAD.			DATOS DEL P	ESPONSABLE DE LA UNIDAD FORM	HI A DODA	
			DATOSELLA	LOT. OFFICE LET OFFICE A COMMITTEE	- CARDONN	
NOMBRE:			ING. ALBERTO BERNAL MARCOS			
fRMA:		A BERNAL & UGP				
CARGO:			JEFE DE GESTION D INTERVENCIONES E	E ESTUDIOS UNIDAD GERENCI SPECIALES	AL DE PUENTES E	
		<u> </u>	IR DE LA ENTIDAD QUE DECLARA I	A VIARIIDAD		
NOMBRE:		ING. JULIO PALACI		er simpredemes		
FIRMA:			117			
CARGO:		GERENTE UNIDAD GERENCIAL DE PUENTES E INTERVENCIONES ESPECIALES				
			/			
Sello:	ELLO:		Gerente e Puentes e	io Palacios García A le la Unidad Gerencial de Intervencian es Especiales Provias Nacional	(&	
FERTIL DELL DE	CLARACIÓN DE VIABILIDA	· · · ·	26/05/2017			

INFORME TECNICO Nº 013 -2017-MTC/20.11.2.abm

AL

ING. JULIO PALACIOS GARCIA

Gerente de la Unidad Gerencial de Puentes e Intervenciones

Especiales

ASUNTO

Declaración de Viabilidad del Proyecto de Inversión Pública, Código

SNIP 365143."Construcción del Puente Santa Rosa, Accesos,

Rotonda y Paso a Desnivel, Región Callao"

FECHA

Lima, 26 de Mayo del 2017.

La Unidad Gerencial de Puentes e Intervenciones Especiales ha realizado la formulación y evaluación del Estudio de Preinversión a Nível de Factibilidad del Proyecto de Inversión Pública "Construcción del Puente Santa Rosa, Accesos, Rotonda y Paso a Desnivel, Región Callao". Esta Unidad Gerencial realiza el presente Informe en el marco del Sistema Nacional de Programación Multianual y Gestión de Inversiones.

1. DATOS GENERALES

CODIGO SNIP	365143
NIVEL DE ESTUDIO	FACTIBILIDAD
MONTO TOTAL DE INVERSION (A Precios de Mercado)	S/. 76,764,983
UNIDAD FORMULADORA	UNIDAD GERENCIAL DE PUENTES E INTERVENCIONES ESPECIALES - PVN

2. RESULTADO

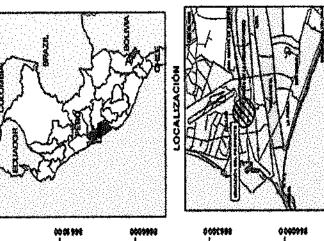
Luego de la formulación, revisión, análisis y evaluación del estudio a nivel de FACTIBILIDAD del Proyecto "Construcción del Puente Santa Rosa, Accesos, Rotonda y Paso a Desnivel, Región Callao", el estudio ha sido APROBADO, por lo que se recomienda declarar la VIABILIDAD del proyecto y continuar con la Fase de INVERSION.

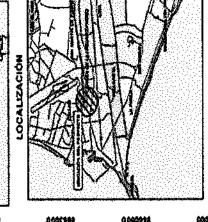
3. ANTECEDENTES

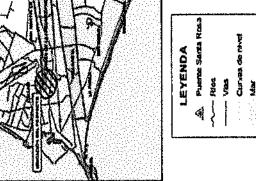
- 3.1 Mediante Memorándum N° 2696-2016-MTC/09.02 e Informe Técnico N° 1527-2016-MTC/09.02 de fecha 12.12.2016 la OPI --Transportes en el marco det Sistema Nacional de Inversión Publica aprueba el Estudio de Preinversión a nivel de Perfil del proyecto con Código SNIP 365143 "Construcción del Puente Santa Rosa, Accesos, Rotonda y Paso a Desnivel, Región Callao".
- 3.2 La Unidad Gerencial de Puentes e Intervenciones Especiales de Provias Nacional, solicitó la exoneración del Estudio de Factibilidad y Declaración de Viabilidad del PIP en asunto a la OPI transportes mediante Memorándum N° 2674-2016-MTC/20.11 de fecha 16.12.2016.
- 3.3 Mediante Oficio N° 930-2016-MTC/09.02 la OPI Transportes comparte y traslada la solicitud de exoneración del Estudio de Factibilidad y Declaración de

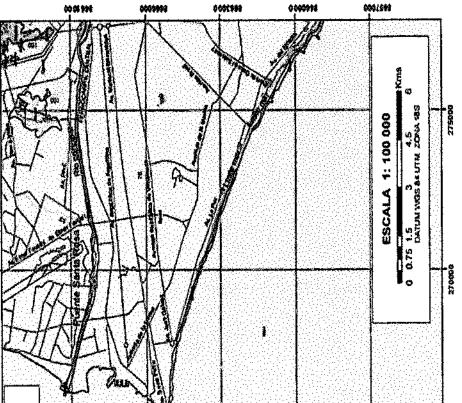
Viabilidad a la Dirección General de Inversión Pública del Ministerio de Economía y Finanzas, dicha dirección mediante Oficio N° 6597-2016-EF/63.01 de fecha 21.12.2016 emiten recomendaciones al referido PIP, la OPI – Transportes mediante Memorándum N° 2838-2016-MTC/09.02 remite la opinión de la DGIP-MEF a la Unidad Gerencial de Puentes e Intervenciones Especiales de Provias Nacional.

- 3.4 Con fecha 23 de diciembre del 2016, es publicado el Decreto Legislativo N°1252, Decreto Legislativo que crea el Sistema Nacional de Programación Multianual y Gestión de Inversiones y deroga la Ley N°27293 Ley del Sistema Nacional de Inversión Pública. Con fecha 23 de febrero del 2017, es publicado el Decreto Supremo N° 027-2017-EF, que aprueba el Reglamento del Decreto Legislativo N°1252, entrando este en vigencia.
- 3.5 El Articulo N° 15, numeral 15.1,del Reglamento del Sistema Nacional de Programación Multianual y Gestión de Inversiones indica: "En el caso de los proyectos de inversión pública que no cuenten con declaración de viabilidad en el marco del Sistema Nacional de Inversión Pública (SNIP) y para cuyo financiamiento no se requiera de una operación de endeudamiento, aval o garantía financiera del Estado, serán de aplicación las disposiciones del Sistema Nacional de Programación Multianual y Gestión de Inversiones(Invierte.pe)."
- 3.6 El Articulo N° 15, numeral 15.2, del Reglamento del Sistema Nacional de Programación Multianual y Gestión de Inversiones indica: "Para efectos de lo dispuesto en el numeral precedente, corresponderá a la UF la formulación, evaluación y de ser el caso, declaración de viabilidad de los proyectos no viables, así como los registros correspondientes en el Banco de Inversiones."
- 3.7 Provias Nacional, es Unidad Formuladora y Ejecutora del Ministerio de Transportes y Comunicaciones éste último pertenece al sector Transportes y Comunicaciones; asimismo la Unidad Gerencial de Puentes e Intervenciones Especiales se encuentra registrada en el Banco de Inversiones como Unidad Formuladora del presente PIP.
- 3.8 Por lo tanto, Provias Nacional a través de la Unidad Gerencial de Puentes e Intervenciones Especiales dentro del marco de Invierte pe es la responsable de emitir el presente informe técnico por ser un PIP cuyo ámbito de desarrollo está circunscrito en la Red Vial Nacional.
- 3.9 Se emite el presente Informe Técnico de acuerdo a los procedimientos establecidos por la normatividad del Sistema Nacional de Programación Multianual y Gestión de Inversiones Invierte.pe, para el proceso de formulación y evaluación de estudios de preinversión.


4. EL PROYECTO


4.1 LOCALIZACIÓN


El Proyecto de Inversión Pública (PIP) "Construcción del Puente Santa Rosa, Accesos, Rotonda y Paso a Desnivel, Región Callao.", ubicado en la en la Red Vial Nacional, Ruta PE-20 I, Km. 00+000, Tramo de carretera: Emp. PE-20 B (Av. Morales Duarez) — Av. Santa Rosa — Emp. CL-100 (Av. Costanera), Distrito de Callao, Provincia Constitucional del Callao, Departamento de Lima involucrando directa e indirectamente las siguientes provincias y distritos: Provincia Constitucional del Callao (Distrito de Bellavista y La Perla) y la Provincia de Lima (Distrito de Lima y San Miguel).


Bo Separat Separat Separate Se

A continuación, se muestra el Mapa de Macro Localización del Proyecto en análisis:

JEFE DE ESTUDIO

NICOLAS VIKLASECA CARRASCO Reg. CIP Nº 29943

250000

0000111

0031233

"Año del Buen Servicio al Ciudadano"

270020

PLANO DE UBICACIÓN

Z

(0001141)

0001999

00 04 553

260506

4.2 OBJETIVO DEL PROYECTO

El objetivo central del proyecto es brindar una adecuada condición de transitabilidad en el acceso al Aeropuerto Jorge Chávez.

4.3 DESCRIPCIÓN Y COMPONENTES DEL PROYECTO

El proyecto comprende la construcción del puente Santa Rosa sobre el rio Rímac, accesos y rotonda sobre la avenida Santa Rosa y paso a desnivel en la avenida Morales Duárez.

A continuación, se detalla la Alternativa seleccionada para el proyecto:

Diseño del Puente

Puente metálico Tipo Arco de 60.00 m. de longitud (42.35 m de luz entre apoyos), la superestructura está formada por seis vigas longitudinales y 14 vigas transversales, están suspendidas por el arco de sección variable mediante péndolas.

La losa de concreto (f.c = 280kg/cm2) se apoyara sobre las vigas transversales de acero y será de 0.20m de espesor. El ancho del tablero es de 17.60 m (Incluyendo muros N. Jersey).

Para la subestructura los estribos están formados por muros de concreto reforzado, en forma de U en vista de planta, con muros laterales perpendiculares al muro frontal y alas en sus extremos. La cimentación en los extremos será directa mediante utilización de zapatas de concreto reforzado

Diseño de la Rotonda

Las características de la Rotonda son las siguientes:

Ancho de Calzada :	14.40 M
Número de Carriles :	4
Ancho de Carril :	3.60 m
Ancho de Berma Interna :	0.60 m
Ancho de Berma Externa :	1.00 m
Velocidad Directriz :	40 km/h
Diámetro de la Isla central :	30.40 m
Diámetro del circulo inscrito:	62.40 m
Luz del puente losa :	23.43 m

Longitud de recorrido : Carril 1 : 110.50 m (aprox.)

Carril 2 : 133.20 m (aprox.)
Carril 3 : 155.80 m (aprox.)
Carril 4 : 178.40 m (aprox.)

Condición estructural : Pavimento rígido de 280 kg/cm2

2 losas de concreto armado 2 Estribos de concreto armado

Muros de Contención en los accesos a la

Rotonda de la Av. Morales Duárez.

Muros New Jersey de 1.10x0.40 para protección de la isla central de la rotonda.

Accesos:

Av. Morales Duárez : 2 calzadas x ancho de calzada 7.20 m x carril de

3.60 m x 2 carriles.

Av. Santa Rosa : 2 calzadas x ancho de calzada 10.80 m x carril

de 3.60 m x 3 carriles.

Diseño vial del Paso a Desnivel

Las características del paso a desnivel son las siguientes:

Longitud : 880.00 m Galibo (Cruce puente) : 5.20 m

Condición estructural : Pavimento rígido de 280 kg/cm2

Ancho de Calzada : 7.20 m (por sentido)

Número de Carriles : 2 por sentido

Ancho de Carril : 3.60 m
Ancho de Berma Interna : 0.60 m
Ancho de Berma Externa : 1.20 m
Velocidad Directriz : 80 km/h

Separador central : 0.80 m de ancho (Muro New Jersey)
Condición estructural : Pavimento rígido de 280 kg/cm2

4.4 MONTO DE INVERSIÓN

El costo de inversión total del proyecto, se estima en S/. 76,764.983.30 Nuevos Soles a precios de mercado. A precios sociales el monto de inversión asciende a S/. 60,644,336.81.

A continuación, se muestra el costo de inversión del proyecto a nivel de componentes:

COSTO TOTAL DEL PROYECTO

(En Soles)

Rubros	Costo Total
Costo de Obra	63,302,104.50
Estudio Definitivo (8%)	5,064,168.36
Supervisión (10%)	6,330,210.44
Interferencias	2,068,500.00
Presupuesto Total	76,764,983.30

NICOLAS VILLASECA Reg. CHP Nº 29

"Año del Buen Servicio al Ciudadano"

5. ANALISIS

5.1 Identificación

a. Área de Influencia y Beneficiarios

Se define como área de influencia directa, los distritos de Callao, Carmen de la Legua y Bellavista zonas aledañas al proyecto, esto teniendo en cuenta que las avenidas Morales Duarez, Elmer Faucett, Argentina y Oscar R. Benavides son las vías que principalmente se verán afectadas por la construcción del nuevo puente Santa Rosa, los distritos mencionados suman un total de 532,914 habitantes según censo nacional 2007.

b. Situación Actual

La rotonda de la Av. Elmer Faucett (Av.Tomas Valle) en la actualidad es el único acceso al Aeropuerto Internacional Jorge Chavez, en hora punta la congestión se concentra en este lugar, extendiéndose el tránsito lento a lo largo de la Av. Faucett incorporando a vías como Morales Duárez (a la altura el puente de la Av. Faucett sobre el rio Rímac) así como a la altura de la Av. Quilca; en las principales horas de la mañana y la noche la congestión vehicular en la Av. Faucett va más allá de la Av. Morales Duárez llegando hasta la Av. Argentina.

c. Problema

El diagnostico presentado en el estudio permite reconocer el problema descrito como "Inadecuadas condiciones de transitabilidad en el acceso al Aeropuerto Jorge Chavez" lo que genera magro a la actividad económica del país por ser el AIJCH punto neurálgico de desarrollo comercial y turístico.

d. Alternativas

El proyecto analiza tres alternativas para el Puente Santa Rosa el cual cruzara el rio Rímac sirviendo como nuevo ingreso al Aeropuerto Internacional Jorge Chávez, las alternativas a considerar corresponden a una estructura aporticada de concreto preesforzado (Alternativa I), una estructura simplemente apoyada conformada por una sección Compuesta de Vigas de Acero Tipo I y losa de concreto reforzado vaciada in-situ (Alternativa II) y un Puente tipo arco con estructura metálica y losa de concreto armado (Alternativa III), para las tres alternativas se considera una rotonda a nivel del puente con la Av. Sta. Rosa y el Puente vehicular con sus carriles de accesos desde la Av. Sta. Rosa y Av. Morales Duárez. Su flujo vehicular circulara mediante un anillo vial lo cual se efectuara alrededor de una isla central, asimismo se proyectara un paso a desnivel en un tramo de la Av. Morales Duárez con una longitud de 680 m. la cual permitirá el flujo constante de dicha avenida.

5.2 Formulación

PERSONAL SOLUTION OF THE PERSONAL SOLUTION OF

a. Demanda

La demanda está constituida por el IMD de la vía en la cual se ubicará el puente. Al respecto se tiene información del TPDA correspondiente al año 2016 que se ha hecho un estudio de tráfico para el proyecto. Las estaciones y el IMD son los siguientes:

TPDA SEGÚN TIPO DE VEHÍCULOS

		TPDA Av. I	Elmer Faucett	TPDA del Aeropuerto		
Tipo de vehiculo	Tasas anual	00745-004		Flujo que circula por Av. Faucett	Flujo Total del Aeropuerto	
Auto	1.4%	68,746	46,457	22,289	28,491	
Utilitario	1.4%	17,354	15,307	2,047	2,616	
Bus	1.4%	1,480	1,412	68	87	
Camión Ligero	3.6%	958	949	9	12	
Camión Mediano	3.6%	50	50	-		
Camión Pesado	3.6%	2	2	-		
Articulados	3.6%	42	42	-		
Т	otal TPDA =	88,632	64,219	24,413	31,206	

Asimismo se han realizado encuestas origen - destino para conocer el distrito de origen de los usuarios del Aeropuerto Internacional Jorge Chávez y determinar el tráfico del AIJCH asignado a la Avenida Elmer Faucett.

VIAJES CON DESTINO AL AEROPUERTO DESDE CADA DISTRITO

Provincias	Distator	Tipo de Vuelos		Viajes	Participación	Usuario
Provincias	Distritos	Internacional	Nacional	Totales	%	potencial del puente
	Callao	49	63	112	5.19%	5.19%
	Bellavista	5	1	6	0.28%	0.28%
	Carmen de la Legua					
Callao	Reynoso	3	4	7	0.32%	0.32%
	La Perla	1	4	5	0.23%	0.23%
	La Punta	2	1	3	0.14%	0.14%
	Ventanilla	1	1	2	0.09%	
	Lima (Cercado)	21	19	40	1.85%	1,85%
	Ancón	7	5	12	0.56%	
	Ate	21	30	51	2.36%	·
	Barranco	11	26	37	1.71%	1.71%
	Breña	13	30	43	1.99%	1.99%
	Carabayllo	4	3	7	0.32%	
	Chaclacayo	2	8	10	0.46%	\
	Chorrillos	19	42	61	2.83%	2.83%
	Cieneguilla	1	1	2	0.09%	
	Comas	12	19	31	1.44%	
Lima	El Agustino	6	3	9	0.42%	
Lana	Independencia	2	8	10	0.46%	
	Jesús María	13	47	60	2.78%	2.78%
	La Molina	48	38	86	3.98%	3.98%
	La Victoria	21	32	53	2.45%	2.45%
	Lince	13	23	36	1.67%	1.67%
	Los Olivos	35	39	74	3.43%	
	Lurigancho		5	5	0.23%	
	Lurin	2	4	6	0.28%	
	Magdalena del Mar	15	29	44	2.04%	2.04%
	Pueblo Libre	32	34	66	3.06%	3.06%
	Miraflores	253	188	441	20.43%	20.43%

NICOLAS VILLASECA CARRASCO Reg. CIP Nº 29943

"Año del Buen Servicio al Ciudadano"

Totales =	1,024	1,135	2,159		78.23%
Villa María del triunfo	1	4	5	0.23%	
Villa et Salvador	4	13	17	0.79%	
Surquillo	16	31	47	2.18%	2.18%
Santiago de Surco	92	89	181	8.38%	8.38%
Santa Anita	9	15	24	1.11%	
San Miguel	65	52	117	5.42%	5.42%
San Martin de Porres	28	45	73	3,38%	
San Luis	19	12	31	1.44%	
Miraflores	11	15	26	1.20%	
San Juan de			•		
San Juan de Lurigancho	18	28	46	2.13%	
San Isidro	75	59	134	6.21%	6.21%
San Borja	63	47	110	5.09%	5.09%
Rímac	9	12	21	0.97%	
Punta Hermosa	1		1	0.05%	
Puente Piedra	1	5	6	0.28%	
Pachacamac		1	1	0.05%	

b. Oferta Actual y Oferta con Proyecto

En la actualidad el ingreso al Aeropuerto Internacional Jorge Chávez se da a la altura de la rotonda de la Av. Elmer Faceta (Av. Tomas Valle), en hora punta la congestión se concentra en este lugar, extendiéndose el lento avance vehicular a lo largo de la Av. Faucett incorporando a vías como Morales Duárez (a la altura el puente de la Av. Faucett sobre el rio Rímac); las características para la situación Actual y con proyecto se describen a continuación:

Características	Oferta Sin Proyecto	Oferta Con proyecto		
Ubicación	Intersección de la Av. Morales Du Distrito del Callao.	làrez con la Av. Sta, Rosa en el		
Puente Sta, Rosa para ingreso al AIJCH.	No existe	Luz de 60.00 m.		
Av. Morales Duárez.	880 m. de Pavimentos Flexible de Doble calzada de dos carriles cada una. En regular condición.	Paso a desnivel de la Av. Morales de 880 m. de pavimento rigido de Cuatro calzada de dos carriles cada una.		
Av. Sta Rosa.	120 m. de Pavimentos Flexible de Doble calzada de dos carriles cada una. En regular condición.	120 m. de Pavimentos rígido de Doble calzada y de Tres carriles cada una.		

Rotonda entre la intersección de la Av. Morales Duárez con la Av. Sta. Rosa en el Distrito del Callao	No existe	Rotonda de 4 carriles de pavimento rígido.
Tipo de puente	No existe.	Alt 1: Puente de concreto L= 55 m. Alt 2: Puente de Estructura Metàlica L= 55 m. Alt 3: Puente Tipo Arco de Estructura Metàlica L= 60 m.
Accesos al aeropuerto internacional de Jorge Chávez (AIJCH),	Por la Av. Tomas Valle y la Av. Elmer Faucett que cuenta con doble calzada, tres carriles centrales y dos auxiliares y un ancho de carril de 3.60 m, en un estado regular.	Nuevo ingreso desde la Av. Sta Rosa hacia el aeropuerto internacional Jorge Chávez (AIJCH). Nuevo ingreso desde la Av. Morales Duárez hacia el aeropuerto internacional de Jorge Chávez (AIJCH).

c. Costos de Inversión

El estudio presenta un análisis detallado de los costos de inversión, los mismos que se sustentan en:

- Planillas de Metrados
- Análisis de Costos Unitarios

MONTO DE INVERSION POR COMPONENTES

(En Soles)

Rubros	Puente Tipo Arco metálico	Paso a Desnivel + Rotonda Morales Duárez	Ingreso Aeropuerto	Cesto Total
Costo Directo de Obra	8,733,883.26	20,419,308.05	9,165,273.88	38,318,465,93
Gastos Generales (30%)	2,620,164.98	6,125,792.42	2,749,582.16	11,495,539 餐
Utilidad 10%)	873,388.33	2,041,930.81	916,527.39	3,831,846 23,
Sub Total	12,227,436.56	28,587,031.27	12,831,383.43	53,645,851,269
IGV	2,200,938.58	5,145,665.63	2,309,649.02	9,656,253,233
Costo Total de Obra	14,428,375.15	33,732,696.90	15,141,032.45	63,802,104.90
Estudio Definitivo (8%)	1,154,270.01	2,698,615.75	1,211,282.60	5,064,168336
Supervisión (10%)	1,442,837.51	3,373,269,69	1,514,103.24	6,330,210,34
Interferencias	474,422.94	1,100,233.58	493,843.48	2,068,500₤0
Presupuesto Total	17,499,905.61	40,904,815.92	18,360,261.77	76,764,983 <u>3</u> 0

d. Costos de Operación y Mantenimiento

Los costos de mantenimiento hacen referencia al Mantenimiento Rutinario y Periódico del puente, accesos así como la infraestructura que la compone. Para el mantenimiento rutinario se estima un costo de S/. 92,953.81 a precios de mercado, el mismo que se realiza anualmente, para el mantenimiento periódico se considera S/. 1,169,155.04. este mantenimiento se realiza cada cinco años.

e. Beneficios

El cálculo de beneficios se realiza en base al siguiente procedimiento:

- Se evalúan dos (2) vías de forma integral para el presente PIP:
 - La vía urbana existente de ingreso al AIJCH en la Av. Elmer Faucett, estimando la longitud actual, con problemas de congestión de vehículos que reduce la velocidad deseada de viaje; incrementando los costos de transporte.
 - La nueva vía del puente con la Av. Santa Rosa asignada un tráfico desviado, por la que se espera que los vehículos circulen sin dificultades con mejores velocidades de operación.
- Se calcula los costos de usuarios (tiempo de viaje) de la situación actual con el tráfico total "Tt" que circula por esta vía. Se emplea una velocidad "Vsp" resultado de la congestión de tráfico existente. Obteniéndose un costo económico total para la situación sin proyecto.
- Del tráfico "Tt" una parte será reasignado hacia la construcción del nuevo puente Santa Rosa. Como esta vía es nueva y carga el tráfico desviado, su velocidad deseada será mayor sin congestión. Se calcula los costos de usuarios (tiempos de viaje) y costos de capital (inversión + mantenimiento con proyecto), resultando el costo económico total para situación con proyecto.
- La parte del tráfico remanente que seguirá circulando por la Av. Elmer Faucett, tendrá una menor congestión (y un aumento de su velocidad de recorrido), para estos usuarios también se calcula sus costos (tiempos de viaje) incorporándolos a los costos calculados en el punto anterior.
- La diferencia entre los costos económicos para cada situación representa el ahorro obtenido por la presencia de este nuevo puente y sus accesos. Es decir:

Ahorro generado por construcción del Puente

Costo Económico de la situación sin proyecto, para la Avenida Faucett (tiempo de viaje) Costo Económico de la situación con proyecto, para el tráfico desviado a Puente Santa Rosa (tiempo de vide costos de capital) y el trafico remanente en la Av. Elmer Faucett (tiempo de dije

STOW OF STORY

f. Evaluación Económica

Para la evaluación social, el estudio utilizo la metodología costo – beneficio empleando como indicadores de rentabilidad el Valor Actual Neto y la Tasa Interna de Retorno. Asimismo, para dicha evaluación, se han convertido los

costos de inversión y mantenimiento de precios de mercado a costos sociales, se ha utilizado la tasa social de descuento del 9%. Teniendo como resultado los siguientes valores:

FLUJO ECONOMICO

(En Soles)

	riodo	Año	Inversion	Mantenimiento	Beneficios Estimados	Beneficios Netos
o s	0	2017	3,032,216.84		<u> </u>	-3,032,216.84
		2018	57,612,119.97			-57,612,119.97
r	1	2019		69,715	7,163,207.18	7,093,491.82
е	2	2020		69,715	7,303,515.85	7,233,800.49
s	3	2021		69,715	7,446,653.94	7,376,938.59
u	4	2022		69,715	7,592,683.23	7,522,967.88
<u> </u>	5	2023		1,146,944	7,741,667.12	6,594,722.91
а	6	2024		69,715	7,893,670.65	7,823,955.29
đ	7	2025		69,715	8,048,760.62	7,979,045.26
0	8	2026		69,715	8,207,005.61	8,137,290.25
S	9	2027		69,715	8,368,476.06	8,298,760.70
d	10	2028		1,146,944	8,533,244.33	7,386,300.13
e	11	2029		69,715	8,701,384.77	8,631,669.42
	12	2030		69,715	8,872,973.81	8,803,258.45
1	13	2031		69,715	9,048,090.00	8,978,374.64
а	14	2032		69,715	9,226,814.13	9,157,098.77
e	15	2033		1,146,944	9,409,229.30	8,262,285.10
V	16	2034		69,715	9,595,421.00	9,525,705.64
a	17	2035		69,715	9,785,477.23	9,715,761.87
1	18	2036		69,715	9,979,488.55	9,909,773.19
u	19	2037		69,715	10,177,548.24	10,107,832.88
a	20	2038		1,146,944	28,573,053.39	27,426,109.19
į.					VANS	13,818,825,13
ó.					TIRS	11,90%

Los resultados de la evaluación económica indican que el proyecto es socialmente rentable.

g. Análisis de Sensibilidad

El análisis de sensibilidad se realiza analizando la variación en el monto de inversión que hace que el proyecto pierda su rentabilidad, así tenemos que frente a aumentos mayores 25.52% en el monto de inversión el VANS se hace negativo.

h. Sostenibilidad

Provias Nacional a través de su Unidad Gerencial de Puentes e Intervenciones Especiales, será la encargada de ejecutar el PIP

"Construcción del Puente Santa Rosa, Accesos, Rotonda y Paso a Desnivel, Región Callao" dado que tiene dentro de sus funciones la recuperación y mantenimiento de la operatividad de la Red Vial Nacional, asimismo esta Unidad Ejecutora cuenta con autonomía técnica, administrativa y financiera para brindar a los usuarios un medio de transporte eficiente y seguro que contribuya con la integración económica y social del país

Una vez ejecutado el PIP por la Gerencia de Puentes e Intervenciones Especiales, la conservación del proyecto estará a cargo de la Unidad Gerencial de Conservación de Provias Nacional. Esto de acuerdo con el Reglamento de Organización y Funciones vigente de Provias Nacional.

i. Impacto Ambiental

El proyecto cuenta con la clasificación de la autoridad ambiental competente el Servicio Nacional de Certificaciones para las Inversiones Sostenible (SENACE), clasificándose el proyecto en la Categoría I — Declaración de Impacto Ambiental, de conformidad con la Resolución Ministerial N° 052-2012-MINAM.

6. CONCLUSIONES Y RECOMENDACIONES

Esta Unidad Gerencial, luego de formular, analizar y evaluar el Estudio de Preinversión a Nivel de Factibilidad del Proyecto de Inversión Pública "Construcción del Puente Santa Rosa, Accesos, Rotonda y Paso a Desnivel, Región Callao", emite las siguientes conclusiones y recomendaciones:

- Los resultados de la Evaluación Económica indican que el Proyecto, desde el punto de vista económico, es rentable socialmente con un Valor Actual Neto de S/. 13.818,825.13 y una Tasa Interna de Retorno de 11.90.
- El monto de inversión de la alternativa de mayor rentabilidad (Alternativa III) se estima en S/.76,764,983.30 a precios de mercado y en S/. 60,644,336.81 a precios sociales.
- El proyecto permite cerrar la brecha de discontinuidad en puntos de la red vial nacional.
- En tal sentido de se recomienda Declarar Viable el Proyecto de Inversión Publica "Construcción del Puente Santa Rosa, Accesos, Rotonda y Paso a Desnivel, Región Callao".

Atentamente,

Ing. Alberto Bernal Marcos Jefe del Área de Gestión de Estudios – UGP Responsable de la Unidad Formuladora

Archivo.

ILAS VILLASECA CARRAS Reg. CIP Nº 29943

ECO. ISABEL HERNÁMDEZ COTRINA
SPECIALISTA EVALVÁCIÓN ECONÓMICA

10.2 Anexo 02: Presupuesto de Obra

ANÁLISIS DE GASTOS GENERALES

Fecha del Presupuesto:

enero-21

	COMPONENTES DE LOS GASTOS GENERALES		MONEDA NA	CIONAL
	COMPONENTES DE LOS GAS	103 GENERALES	s/.	%
	COSTO DIRECTO		215,143,873.38	
1	GASTOS GENERALES			
	A GASTOS FIJOS No directamente relacionados cor GASTOS FIJOS GASTOS FIJOS COVID	ı el tiempo	6,889,769.74 6,860,739.56 29,030.18	3.20%
	B GASTOS VARIABLES Directamente relacionados con el GASTOS VARIABLES GASTOS VARIABLES COVID	tiempo	25,367,711.81 24,156,154.72 1,211,557.08	11.79%
	TOTAL DE GASTOS GENERALES		32,257,481.55	14.99%
2	UTILIDAD		21,514,387.34	10.00%
	PRESUPUESTO REFERENCIAL SIN I	GV	268,915,742.27	
3	I.G.V.	18.00%	48,404,833.61	18.00%
	PRESUPUESTO REFERENCIAL INC	ıgv	317,320,575.88	

JEFE DE ESTUDIO

00071

Presupuesto

1101007 EDI CONSTRUCCION DEL PUENTE SANTA ROSA, ACCESOS, ROTONDA Y PASO A DESNIVEL, REGION Presupuesto

CALLAO_ACTUALIZACIÓN

EDI CONSTRUCCION DEL PUENTE SANTA ROSA, ACCESOS, ROTONDA Y PASO A DESNIVEL, REGION Subpresupuesto 001

CALLAO_ACTUALIZACIÓN

PROVIAS Cliente Lugar

Costo al 31/01/2021 CALLAO - CALLAO

tem	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
	TRABAJOS PRELIMINARES	<u> </u>	<u> </u>		286,829.
1.A	MOVILIZACION Y DESMOVILIZACION DE EQUIPO	glb	1.00	19,413.07	19,413.
3.A	MANTENIMIENTO DE TRÁNSITO TEMPORAL Y SEGURIDAD VIAL	glb	1.00	267,416.72	267,416.
	PUENTE SANTA ROSA				25,997,289.
	TRABAJOS PRELIMINARES				9,585.
!.B	TRAZO Y REPLANTEO DE PUENTES	m2	2,827.44	3.39	9,585.0
	MOVIMIENTO DE TIERRAS				8,560.
1.C	EXCAVACION PARA ESTRUCTURAS EN MATERIAL COMUN	m3	37.48	13.07	489.
2.A	RELLENO PARA ESTRUCTURAS CON MATERIAL DE CANTERA	m3	176.72	45.67	8,070.
)	PAVIMENTOS				340,721.
2.A	SUB BASE GRANULAR	m3	7,548.12	41.83	315,737.
3.A1	PAVIMENTO DE CONCRETO HIDRÁULICO (F'C=280KG/CM2) - MANUAL	m3	48.61	303.93	14,774.
3.B	JUNTA TRANSVERSAL DE CONTRACCIÓN	m	61.60	150.54	9,273.
3.C	JUNTA LONGITUDINAL DE CONSTRUCCION	m	37.88	24.73	936.
10	SUB ESTRUCTURA				10,932,060.
11	PILOTES				7,908,487.
l.B	MOVILIZACION Y DESMOVILIZACION DE EQUIPO DE PILOTAJE	glb	1.00	105,806.45	105,806.
2.B3	EXCAVACION CLASIFICADA EN MATERIAL SUELTO	m3	17,918.87	2.46	44,080.4
.C2	CONCRETO (fc= 280 kg/cm²) P/ PILOTES	m3	2,791.20	266.82	744,747.
.В	ACERO DE REFUERZO fy= 4200 kg/cm² (P/ PILOTES)	kg	578,079.80	8.45	4,884,774.
13.A	PILOTE D= 1.5 m. EXCAVADO	m	1,491.00	1,303.26	1,943,160.
14.A	PRUEBA DE INTEGRIDAD EN PILOTES	u	59.00	1,088.10	64,197.
8.A	DESCABEZADO DE PILOTES	u	59.00	189.95	11,207.
19.A	TUBO DE PVC PARA AUSCULTACION D=75mm	m	5,964.00	18.53	110,512.
2	ESTRIBOS				3,023,572.
.C	EXCAVACION PARA ESTRUCTURAS EN MATERIAL COMUN	m3	10,159.18	13.07	132,780.
.A	RELLENO PARA ESTRUCTURAS CON MATERIAL DE CANTERA	m3	7,819.33	45.67	357,108.
.C	CONCRETO ESTRUCTURAL (f'c= 280 kg/cm²) - PREMEZCLADO	m3	3,016.38	273.05	823,622.
i.H	CONCRETO SIMPLE (fc= 100 Kg/cm²) - PREMEZCLADO	m3	107.65	225.38	24,262.
Α.	ACERO DE REFUERZO fy= 4200 kg/cm ²	kg	246,332.84	6.10	1,502,630.
.A	TUBERIA DE POLIETILENO DE ALTA DENSIDAD D=150mm	m	117.13	31.09	3,641.
.А	GEOTEXTIL DRENANTE	m2	536.67	14.98	8,039.
.Α	ENCOFRADO Y DESENCOFRADO	m2	1,309.46	75.33	98,641.
.В	ENCOFRADO Y DESENCOFRADO CARA VISTA	m2	452.95	95.15	43,098.
.A	IMPERMEABILIZACIÓN DE SUPERFICIE	m2	536.67	55.43	29,747.
0	SUPER ESTRUCTURA				11,778,730.
i.A2	CONCRETO ESTRUCTURAL (f'c= 500 Kg/cm²) - PREMEZCLADO	m3	3,912.81	325.55	1,273,81
.A	ACERO DE REFUERZO fy= 4200 kg/cm ²	kg	640,218.80	6.10	3,905,33
.В	ENCOFRADO Y DESENCOFRADO CARA VISTA	m2	5,432.06	95.15	516,86 0
5.A	PRETENSADO DE VIGAS	t-m	3,103,428.61	1.96 /	6,082,72
0	VARIOS				1,177,78
3.A1	TUBERIA DE PVC SAP D=80mm (INCL. SUMIDERO)-Puente	m	6.00	28.23	7 1695
.В	VEREDA DE CONCRETO SOBRE ESTRUCTURA	m2	312.00	106.58	33,25
0.A	JUNTA DE DILATACIÓN PARA PUENTES (PUENTE SANTA ROSA)	m	79.76	5,965.33	475,794≶
2.B	APOYO DE NEOPRENO CON NUCLEO DE PLOMO 1100X198	u	8.00	39,503.35	316,026
3.A	FALSO PUENTE	glb	1.00	203,080.30	203,080.
6.A	PRUEBA DE CARGA DEL PUENTE - PUENTE	glb	1.00	115,783.15	115,783
10.A	SUMINISTRO E INSTALACION DE TUBERIA DE PVC SAP D= 2"	m	198.81	33.40	6,64
0.B	SUMINISTRO E INSTALACION DE TUBERIA DE PVC SAP D= 4"	m	397.62	48.76	19,38
37.A	BUZON DE INSPECCION	u	8.00	955.73	7,645.
	TRANSPORTE	ŭ	3.30	000.70	1,749,849.
.A	TRANSPORTE DE MATERIALES GRANULARES ENTRE 120 m Y 1000 m	m3k	7,062.19	5.57	39,336.
).B	TRANSPORTE DE MATERIALES GRANULARES A MÁS DE 1000 m	m3k	163,553.98	1.65	269,864.
i.C	TRANSPORTE DE MATERIALES SICHIOENTES ENTRE 120 m Y 1000 m	m3k	.55,000.00	1.00	200,004.

ESPECIALISTA EVALUACIÓN ECONÓMICA Reg. CEP N° 03476

Presupuesto

Costo al

2

00072

31/01/2021

Presupuesto

EDI CONSTRUCCION DEL PUENTE SANTA ROSA, ACCESOS, ROTONDA Y PASO A DESNIVEL, REGION CALLAO_ACTUALIZACIÓN

EDI CONSTRUCCION DEL PUENTE SANTA ROSA, ACCESOS, ROTONDA Y PASO A DESNIVEL, REGION Subpresupuesto 001

CALLAO_ACTUALIZACIÓN

PROVIAS Cliente

CALLAO - CALLAO Lugar

1101007

ltem	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
00.D	TRANSPORTE DE MATERIALES EXCEDENTES A MÁS DE 1000 m	m3k	596,499.88	1.80	1,073,699.7
0.D1	PAGO POR DISPOSICION DE MATERIAL EXCEDENTE	m3	30,906.73	5.00	154,533.6
	OBRAS DE PROTECCIÓN				118,980,325.4
)	TRABAJOS PRELIMINARES				8,457.6
2.A	TRAZO Y REPLANTEO	km	3.38	2,502.25	8,457.6
1	ENROCADO DE PROTECCION				34,509,544.4
8.A	OBRAS DE ENCAUZAMIENTO DE RIO	m3	1,124,034.55	3.82	4,293,811.9
2.A	RELLENO PARA ESTRUCTURAS CON MATERIAL DE CANTERA	m3	225,431.90	45.67	10,295,474.8
1.B	GEOTEXTIL NO TEJIDO CLASE 1	m2	164,709.60	6.26	1,031,082.1
3.A	ENROCADO DE PROTECCION	m3	308,344.36	61.26	18,889,175.4
2	MURO FIJADOR				1,117,180.6
11.D	EXCAVACION PARA ESTRUCTURAS EN MATERIAL COMUN BAJO AGUA	m3	10,198.32	13.21	134,719.8
2.A	RELLENO PARA ESTRUCTURAS CON MATERIAL DE CANTERA	m3	1,527.46	45.67	69,759.1
3.G	CONCRETO CICLOPEO (fc= 280 kg/cm²+60% PG) C-V	m3	1,170.00	211.44	247,384.8
1.B	GEOTEXTIL NO TEJIDO CLASE 1	m2	5,403.84	6.26	33,828.0
7.A	ENCOFRADO Y DESENCOFRADO	m2	1,944.00	75.33	146,441.5
1.A	MAMPOSTERIA	m3	234.00	138.48	32,404.3
3.A	ENROCADO DE PROTECCION	m3	6,862.05	61.26	420,369.1
0.A	COLOCACION DE PEGAMENTO EPOXICO	m2	468.00	38.41	17,975.8
1.A	JUNTA TIPO WATERSTOP	m	120.00	48.44	5,812.8
11.B	JUNTA DE DILATACIÓN PARA MURO FIJADOR	m2	180.00	47.14	8,485.2
0	TRANSPORTE				83,345,142.7
0.A	TRANSPORTE DE MATERIALES GRANULARES ENTRE 120 m Y 1000 m	m3k	253,078.63	5.57	1,409,647.9
0.B	TRANSPORTE DE MATERIALES GRANULARES A MÁS DE 1000 m	m3k	5,861,071.15	1.65	9,670,767.4
0.C	TRANSPORTE DE MATERIALES EXCEDENTES ENTRE 120 m Y 1000 m	m3k	998,124.92	7.81	7,795,355.6
0.D	TRANSPORTE DE MATERIALES EXCEDENTES A MÁS DE 1000 m	m3k	21,890,694.40	1.80	39,403,249.9
0.D1	PAGO POR DISPOSICION DE MATERIAL EXCEDENTE	m3	1,134,232.87	5.00	5,671,164.3
0.G	TRANSPORTE DE ROCA ENTRE 120 m Y 1000 m	m3k	278,205.32	7.48	2,080,975.7
0.H	TRANSPORTE DE ROCA A MÁS DE 1000 m	m3k	8,324,029.66	2.08	17,313,981.6
	ACCESOS				51,186,360.2
0	OBRAS PRELIMINARES				6,116,201.6
2.A	TRAZO Y REPLANTEO	km	3.59	2,502.25	8,983.0
0.A	CONSTRUCCION DE POZOS PARA ABATIMIENTO DE NIVEL FREATICO	u	83.00	26,886.35	2,231,567.0
1.A	SUMINISTRO E INSTALACIÓN DE BOMBA SUMERGIBLE TIPO TURBINA	u	93.00	12,309.85	1,144,816.0
2.A	TUBERIA DE HDPE 4" - SALIDA DE POZOS	m	1,660.00	162.02	268,953.2
3.A	TUBERIA DE POLIETILENO D=1000mm	m	1,490.00	1,652.27	2,461,882.3
0	MOVIMIENTO DE TIERRAS				2,168,31
2.B3	EXCAVACION CLASIFICADA EN MATERIAL SUELTO	m3	141,606.17	2.46	348,35 0 7
2.B33	EXCAVACION CLASIFICADA EN MATERIAL SUELTO BAJO AGUA	m3	42,638.00	2.87	122,37
0.A	PERFILADO Y COMPACTACTADO EN ZONAS DE CORTE	m2	17,252.29	1.47	25,360
5.B	TERRAPLENES CON MATERIAL PROPIO	m3	15,907.84	9.72	154,624.2
2.B	RELLENO PARA ESTRUCTURAS CON MATERIAL PROPIO	m3	33,229.92	45.67	1,517,610.4
0	PAVIMENTOS				7,385,80
2.A	SUB BASE GRANULAR	m3	7,548.12	41.83	315,737.8
8.A	PAVIMENTO DE CONCRETO HIDRÁULICO (F´C=280KG/CM2)	m3	5,454.47	302.70	1,651,068.0
8.A2	PAVIMENTO DE CONCRETO HIDRÁULICO (F'C=350KG/CM2)	m3	9,120.82	325.13	2,965,452.2
8.B	JUNTA TRANSVERSAL DE CONTRACCIÓN	m	12,443.85	150.87	1,877,403.6
8.C	JUNTA LONGITUDINAL DE CONSTRUCCION	m	12,347.61	24.73	305,35
8.D	JUNTA TRANSVERSAL DE CONSTRUCCION	m	1,641.15	165.00	270,78
0	DRENAJE				507,863.1
1.C	EXCAVACION PARA ESTRUCTURAS EN MATERIAL COMUN	m3	56.42	13.07	737.4
2.B	RELLENO PARA ESTRUCTURAS CON MATERIAL PROPIO	m3	23.56	45.67	1,075.9
Z.D					.,
3.C	CONCRETO ESTRUCTURAL (fc= 280 kg/cm²) - PREMEZCLADO	m3	116.12	273.05	31,706.5

ESPECIALISTA EVALUACIÓN ECONÓMICA REG. CEP N° 03476

3 00073

31/01/2021

Presupuesto

1101007 EDI CONSTRUCCION DEL PUENTE SANTA ROSA, ACCESOS, ROTONDA Y PASO A DESNIVEL, REGION Presupuesto

CALLAO_ACTUALIZACIÓN

EDI CONSTRUCCION DEL PUENTE SANTA ROSA, ACCESOS, ROTONDA Y PASO A DESNIVEL, REGION Subpresupuesto 001

CALLAO_ACTUALIZACIÓN

PROVIAS Cliente

CALLAO - CALLAO Lugar

Item	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
503.H	CONCRETO SIMPLE (fc= 100 Kg/cm²) - PREMEZCLADO	m3	34.75	225.38	7,831.9
04.A	ACERO DE REFUERZO fy= 4200 kg/cm²	kg	9,221.92	6.10	56,253.7
09.A	SUBDRENAJE	m	1,851.00	104.75	193,892.2
10.A	CUNETA REVESTIDA TIPO I	m	211.02	392.13	82,747.2
10.B	CUNETA REVESTIDA TIPO II	m	105.51	637.98	67,313.2
7.A	ENCOFRADO Y DESENCOFRADO	m2	207.42	75.33	15,624.9
0.A	EQUIPAMIENTO DE SISTEMA DE BOMBEO	u	1.00	42,847.90	42,847.9
25.A	IMPERMEABILIZACIÓN DE SUPERFICIE	m2	66.25	55.43	3,672.2
1.A	JUNTA TIPO WATERSTOP	m	28.08	48.44	1,360.2
0	OBRAS COMPLEMENTARIAS				1,013,148.8
4.A	DEMOLICIONES DE EDIFICACIONES	m3	782.94	131.09	102,635.6
4.F	DEMOLICIONES DE PAVIMENTOS, SARDINELES Y VEREDAS DE CONCRETO	m3	2,498.93	86.92	217,207.0
6.A	VEREDA DE CONCRETO SOBRE TIERRA	m2	11,288.20	37.40	422,178.6
7.A	SARDINEL DE VEREDA 0.15x0.35m.	m	2,262.54	77.41	175,143.2
7.B	SARDINEL DE VEREDA 0.30x0.85m.	m	408.67	234.87	95,984.3
0	TRANSPORTE				6,783,665.8
0.A	TRANSPORTE DE MATERIALES GRANULARES ENTRE 120 m Y 1000 m	m3k	7,570.81	5.57	42,169.4
D.B	TRANSPORTE DE MATERIALES GRANULARES A MÁS DE 1000 m	m3k	175,333.02	1.65	289,299.4
D.C	TRANSPORTE DE MATERIALES EXCEDENTES ENTRE 120 m Y 1000 m	m3k	121,810.61	7.81	951,340.8
D.D	TRANSPORTE DE MATERIALES EXCEDENTES A MÁS DE 1000 m	m3k	2,671,528.00	1.80	4,808,750.4
0.D1	PAGO POR DISPOSICION DE MATERIAL EXCEDENTE	m3	138,421.14	5.00	692,105.7
00	MUROS				27,211,355.0
3.C	CONCRETO ESTRUCTURAL (f'c= 280 kg/cm²) - PREMEZCLADO	m3	24,749.21	273.05	6,757,771.7
3.H	CONCRETO SIMPLE (fc= 100 Kg/cm²) - PREMEZCLADO	m3	1,789.54	225.38	403\326.5
1.A	ACERO DE REFUERZO fy= 4200 kg/cm²	kg	1,684,852.19	6.10	10,277,598.3
3.A	TUBERIA DE POLIETILENO DE ALTA DENSIDAD D=150mm	m	1,823.99	31.09	56,707.8
1.A	GEOTEXTIL DRENANTE	m2	7,702.75	14.98	115,387.2
7.A	ENCOFRADO Y DESENCOFRADO	m2	12,271.59	75.33	924,418.8
7.B	ENCOFRADO Y DESENCOFRADO CARA VISTA	m2	7,521.07	95.15	715,629.
5.A	IMPERMEABILIZACIÓN DE SUPERFICIE	m2	7,702.75	55.43	426,963.4
1.A	JUNTA TIPO WATERSTOP	m	2,606.59	48.44	126,263.2
11.A	JUNTA DE DILATACIÓN PARA MUROS	m2	1,274.86	47.14	60,096.9
36.A	IMPERMEABILIZACION DE PASO A DESNIVEL	m2	23,375.62	314.31	7,347,191.1
	ROTONDA SANTA ROSA				10,988,973.1
0	TRABAJOS PRELIMINARES				6,864.7
2.B	TRAZO Y REPLANTEO DE PUENTES	m2	2,025.00	3.39	6,864.7
0	MOVIMIENTO DE TIERRAS				67,135
2.B3	EXCAVACION CLASIFICADA EN MATERIAL SUELTO	m3	1,714.84	2.46	4,218/5
0.A	PERFILADO Y COMPACTACTADO EN ZONAS DE CORTE	m2	629.35	1.47	9200
5.B	TERRAPLENES CON MATERIAL PROPIO	m3	6,377.76	9.72 /	61,99
0	PAVIMENTOS				251,388.5
2.A	SUB BASE GRANULAR	m3	236.05	41.83	9,873.9
8.A	PAVIMENTO DE CONCRETO HIDRÁULICO (F'C=280KG/CM2)	m3	393.40	302.70	119,08
8.B	JUNTA TRANSVERSAL DE CONTRACCIÓN	m	595.00	150.87	89,767.6
8.C	JUNTA LONGITUDINAL CONSTRUCCION	m	753.73	24.73	18,639.7
8.D	JUNTA TRANSVERSAL DE CONSTRUCCION	m	85.00	165.00	14,025.0
00	SUB ESTRUCTURA				7,186,186.2
3.C1	CONCRETO ESTRUCTURAL (fc= 280 kg/cm²) BAJO AGUA	m3	5,936.58	274.09	1,627,15
3.H1	CONCRETO SIMPLE (fc= 100 kg/cm²) BAJO AGUA	m3	257.68	226.42	58,34
4.A	ACERO DE REFUERZO fy= 4200 kg/cm²	kg	604,888.98	6.10	3,689,822.7
7.A	ENCOFRADO Y DESENCOFRADO	m2	2,041.02	75.33	153,750.0
7.A1	ENCOFRADO Y DESENCOFRADO BAJO AGUA	m2	441.01	89.22	39,346.9
7.B	ENCOFRADO Y DESENCOFRADO CARA VISTA	m2	1,368.28	95.15	130,191.8
			1,500,20	30.10	130,131.0

ESPECIALISTA EVALUACIÓN ECONÓMICA REG. CEP N° 03476

00074

31/01/2021

Presupuesto

1101007 EDI CONSTRUCCION DEL PUENTE SANTA ROSA, ACCESOS, ROTONDA Y PASO A DESNIVEL, REGION Presupuesto

CALLAO_ACTUALIZACIÓN

EDI CONSTRUCCION DEL PUENTE SANTA ROSA, ACCESOS, ROTONDA Y PASO A DESNIVEL, REGION Subpresupuesto 001

CALLAO_ACTUALIZACIÓN

PROVIAS Cliente

CALLAO - CALLAO Lugar

	ALLAO - CALLAO - CALLAO				
tem De	escripción	Und.	Metrado	Precio S/.	Parcial S/.
1.A JU	JNTA TIPO WATERSTOP (Ancho=22cm)	m	176.64	48.44	8,556.4
36.A IM	PERMEABILIZACION DE PASO A DESNIVEL	m2	4,668.51	314.31	1,467,359.3
0 St	JPER ESTRUCTURA				2,172,819.9
.A1 C0	ONCRETO ESTRUCTURAL (fc= 420 Kg/cm²) - PREMEZCLADO	m3	475.80	311.90	148,402.0
i.C Co	ONCRETO ESTRUCTURAL (fc= 280 kg/cm²) - PREMEZCLADO	m3	440.77	273.05	120,352.2
.A AC	CERO DE REFUERZO fy= 4200 kg/cm ²	kg	83,538.60	6.10	509,585.
7.B EN	NCOFRADO Y DESENCOFRADO CARA VISTA	m2	381.64	95.15	36,313.0
)1.A PF	RELOSAS PARA ENCOFRADO	m2	1,047.51	152.43	159,671.9
05.A PF	RETENSADO DE VIGAS	t-m	611,477.14	1.96	1,198,495.
00 VA	ARIOS				1,295,483.
3.A2 TU	JBERIA DE PVC SAP D=80mm (INCL. SUMIDERO)-Rotonda	m	40.40	64.97	2,624.
i.B VE	EREDA DE CONCRETO SOBRE ESTRUCTURA	m2	252.84	106.58	26,947.
IO.B JU	INTA DE DILATACIÓN PARA PUENTES (ROTONDA SANTA ROSA)	m	128.68	3,424.23	440,629.9
2.A AF	POYO DE NEOPRENO CON NUCLEO DE PLOMO 350X77	u	48.00	15,836.14	760,134.
6.A PF	RUEBA DE CARGA DEL PUENTE - ROTONDA	glb	1.00	50,856.43	50,856.
0.A SU	JMINISTRO E INSTALACION DE TUBERIA DE PVC SAP D= 2"	m	79.95	33.40	2,670.
0.B St	JMINISTRO E INSTALACION DE TUBERIA DE PVC SAP D= 4"	m	159.90	48.76	7,796.
37.A BL	JZON DE INSPECCION	u	4.00	955.73	3,822.
) TF	RANSPORTE				9,094.
).A TF	RANSPORTE DE MATERIALES GRANULARES ENTRE 120 m Y 1000 m	m3k	207.72	5.57	1,157.
).B TF	RANSPORTE DE MATERIALES GRANULARES A MÁS DE 1000 m	m3k	4,810.70	1.65	7,937.6
AF	RQUITECTURA Y PAISAJISMO				4,175,078.0
3 PI	SOS Y ACABADOS				1,082,101.
.E CC	ONCRETO ESTRUCTURAL (fc= 175 Kg/cm²) - PREMEZCLADO	m3	786.36	232.70	182,985.
.A AC	CERO DE REFUERZO fy= 4200 kg/cm ²	kg	2,773.93	6.10	16,920.
.A EN	NCOFRADO Y DESENCOFRADO	m2	2,153.55	75.33	162,226.
3.A EX	CAVACION MANUAL	m3	786.36	53.76	42,274.
03.B AC	CABADO PULIDO C/MORTERO 1:2 e=1.5cm.	m2	4,895.35	13.52	66,185.
3.C1 AC	CABADO DE PISO EN CAUCHO COLOR ROJO RUBI	m2	2,492.22	150.55	375,203.
3.C2 AC	CABADO DE PISO EN CAUCHO COLOR NARANJA	m2	341.13	189.39	64,606.
3.C3 AC	CABADO DE PISO EN CAUCHO COLOR NARANJA PALIDO	m2	228.00	189.39	43,180.9
3.C4 AC	CABADO DE PISO EN CAUCHO COLOR BLANCO	m2	27.10	221.16	5,993.
3.D AC	CABADO DE GRAVILLA	m2	1,038.63	89.07	92,510.
13.E GI	EOMANTA DE FIBRA DE COCO	m2	612.58	10.78	6,603.
3.F JU	INTA DE DILATACION EN PISO DE PARQUE	m	924.88	25.31	23,408.
05 CC	DBERTURA				254,579.
	ANCHA DE ALUZINC E=0.35MM C/PINTURA ELECTROSTATICA CON BASE POXICA	m2	2,588.35	50.72	131,28
5.B TU	JBO 40x40mm P/ FIJACION DE CUBIERTA	m	4,837.91	16.80	81,2765
5.C CL	JBIERTA LIGERA METALICA CON PLANCHA DE ALUZINC	m2	31.77	98.29	3,12
5.D CI	JBIERTA LIGERA METALICA CON MALLA ELECTROSOLDADA	m2	18.06	80.25	1,448.
D5.E PL	ANCHA DE ALUZINC P/ FIJACION DE LUMINARIA EN CUBIERTA E=2MM.	m	1,183.62	31.64	37,448
06 M	OBILIARIO				164,766
06.B AF	PARCABICICLETAS CON ACABADO ESMALTE ROJO RUBI ANTICORROSIVO	u	10.00	1,016.38	10,165
	ODULO DE DESARROLLO DE MOTRICIDAD ACABADO ESMALTE ROJO NTICORROSIVO	u	4.00	11,833.70	47,33 4.
6.E AS	SIENTO DE CONCRETO CIRCULAR FROTACHADO	u	30.00	91.91	2,757
6.F MI	ESA CIRCULAR DE CONCRETO FROTACHADO	u	11.00	159.00	1,745.
16.G M	OBILIARIO FORMAS IRREGULARES EN CONCRETO	m2	25.56	190.88	4,87
6.H1 M	ACETERO DE CONCRETO CIRCULAR H=0.80m. D=1.73M.	u	1.00	1,134.70	1,134
6.H2 M	ACETERO DE CONCRETO CIRCULAR H=0.80m. D=1.50M.	u	1.00	983.18	983.
6.H3 M	ACETERO DE CONCRETO CIRCULAR H=0.80m. D=1.20M.	u	3.00	785.58	2,356.
06.H4 M	ACETERO DE CONCRETO CIRCULAR H=0.45m. D=1.20M.	u	3.00	459.15	1,377.
16.I CC	ONSTRUCCIÓN DE SKATEPARK	glb	1.00	83,969.75	83,969.7
06.J BA	ANCAS DE MADERA	m	52.92	152.33	8,061.3

ESPECIALISTA EVALUACIÓN ECONÓMICA Reg. CEP N° 03476

31/01/2021

1101007

EDI CONSTRUCCION DEL PUENTE SANTA ROSA, ACCESOS, ROTONDA Y PASO A DESNIVEL, REGION

CALLAO_ACTUALIZACIÓN

Subpresupuesto 001

EDI CONSTRUCCION DEL PUENTE SANTA ROSA, ACCESOS, ROTONDA Y PASO A DESNIVEL, REGION

CALLAO_ACTUALIZACIÓN

Cliente PROVIAS

Lugar CALLAO - CALLAO

Item	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
2007	ARBORIZACIÓN				34,554.52
2007.A	PLANTA DE HUARANHUAY	u	6.00	43.17	259.02
2007.B	PLANTA DE SAUCO	u	28.00	77.27	2,163.56
2007.C	PLANTA DE LAUREL ORNAMENTAL	u	86.00	71.83	6,177.38
2007.D	PLANTA DE FICUS	u	5.00	63.22	316.10
007.E	PLANTA DE GERANIO	u	52.00	40.69	2,115.88
007.F	GRASS NATURAL	m2	1,776.63	13.24	23,522.58
009	PINTURA		1,7.7.0.00	10.21	19,464.12
009.C	PINTURA EN MUROS	m2	427.96	33.79	14,460.77
009.D1	PINTURA PARA MOBILIARIO ESMALTE COLOR BLANCO	m2	61.77	15.92	983.38
009.E	PINTURA ESMALTE EPOXICO PARA PISO	m2	245.87	16.35	4,019.97
008	ESTRUCTURAS	IIIZ	243.07	10.55	2,582,956.86
08.A		t	87.39	9,435.32	824,552.61
008	ESTRUCTURA METALICA DE SOPORTE	l	07.39	9,435.32	•
03.C	PASARELA ZONA ELEVADA	2	400.00	072.05	1,272,408.50
	CONCRETO ESTRUCTURAL (fc= 280 kg/cm²) - PREMEZCLADO	m3	190.23	273.05	51,942.30
03.C3	CONCRETO ESTRUCTURAL (fc= 280 kg/cm²) - PREMEZCLADO C-V	m3	759.61	288.80	219,375.37
3.F	CONCRETO SIMPLE (fc= 140 Kg/cm²) - PREMEZCLADO	m3	68.17	231.68	15,793.63
)4.A	ACERO DE REFUERZO fy= 4200 kg/cm²	kg	129,120.87	6.10	787,637.31
7.A	ENCOFRADO Y DESENCOFRADO	m2	2,623.92	75.33	197,659.89
008	MUROS				485,995.75
)3.C	CONCRETO ESTRUCTURAL (fc= 280 kg/cm²) - PREMEZCLADO	m3	491.08	273.05	134,089.39
3.F	CONCRETO SIMPLE (fc= 140 Kg/cm²) - PREMEZCLADO	m3	65.07	231.68	15,075.42
4.A	ACERO DE REFUERZO fy= 4200 kg/cm ²	kg	37,780.70	6.10	230,462.27
7.A	ENCOFRADO Y DESENCOFRADO	m2	1,343.05	75.33	101,171.96
11.A	JUNTA DE DILATACIÓN PARA MUROS	m2	110.24	47.14	5,196.7
00	TRANSPORTE				3 6,6 54.40
00.C	TRANSPORTE DE MATERIALES EXCEDENTES ENTRE 120 m Y 1000 m	m3k	692.00	7.81	5,404.52
0.D	TRANSPORTE DE MATERIALES EXCEDENTES A MÁS DE 1000 m	m3k	15,176.71	1.80	27,318.08
0.D1	PAGO POR DISPOSICION DE MATERIAL EXCEDENTE	m3	786.36	5.00	3,931.
	SEÑALIZACION Y SEGURIDAD VIAL				3,267,907.72
1.A	SEÑALES PREVENTIVAS (0.60 x 0.60 m)	u	29.00	315.55	9,150.95
2.A	SEÑALES REGLAMENTARIAS (0.60 x 0.90 m)	u	58.00	320.00	18,560.00
2.B	REUBICACIÓN DE SEÑAL REGLAMENTARIA	u	1.00	475.64	475.64
3.A	SEÑALES INFORMATIVAS	m2	79.84	1,069.42	85,382.49
4.A.A	TACHAS RETROREFLECTIVAS	u	805.00	16.86	13,572.30
05.A	MARCAS EN EL PAVIMENTO	m2	3,048.23	10.34	31,518.70
6.C	BARRERAS DE SEGURIDAD VIAL METÁLICA H4bW3A - PRETIL	m	1,154.00	500.53	577,61
06.C1	TERMINAL PRETIL METALICO DE FINAL DE TRAMO EN ABATIMIENTO CORTO (L=4.05m.)	u	2.00	2,977.77	5,95 6 54
06.C2	TERMINAL PRETIL METALICO DE INICIO DE TRAMO EN ABATIMIENTO CORTO (L=4.05m.)	u	1.00	2,977.77	2,97
06.C3	CONEXION DE PRETIL H4bW3A A TERMINAL P4 DE SALIDA (D) (L=10m.)	u	4.00	6,006.31	24,025.24
06.D	BARRERAS DE SEGURIDAD VIAL METÁLICA H4bW3A - TIERRAS	m	159.00	476.66	75,788.94
06.D1	TERMINAL DE BARRERA DE SEGURIDAD H4bW3A EN ABATIMIENTO ESVIADO (L=9.6m.)	u	4.00	5,965.64	23,862,66
6.D2	TERMINAL DE BARRERA DE SEGURIDAD H46W3A EN ABATIMIENTO ESVIADO CORTO (L=4.775m.)	u	1.00	2,842.28	2,842.28
6.D3	TERMINAL DE BARRERA DE APROXIMACION P4 (L=12m.)	u	14.00	9,151.77	128,124/08
06.D4	TERMINAL DE BARRERA DE SALIDA P4 (L=4.5m.)	u	8.00	3,754.24	30,03 <u>3.9</u> 2
06.D5	CONEXION DE BARRERA DE SEGURIDAD H4bW3A A TERMINAL P4 DE APROXIMACION (A) (L=10 m .)	u	4.00	5,721.01	22,88
06.D6	CONEXION DE BARRERA SIMPLE H4bW3A A ATENUADOR DE IMPACTOS CLASE 80 P/V (L=9m.)	u	2.00	5,240.51	10,481.02
06.E	BARRERAS DE SEGURIDAD VIAL METÁLICA H2W3A - TIERRAS	m	3,760.00	254.86	958,273.60
06.E1	TERMINAL DE BARRERA DE SEGURIDAD H2W3A EN ABATIMIENTO ESVIADO	u	6.00	4,529.76	27,178.56

ESPECIALISTA EVALUACIÓN ECONTRINA Reg. CEP N° 03476

00076

31/01/2021

Presupuesto

1101007 Presupuesto EDI CONSTRUCCION DEL PUENTE SANTA ROSA, ACCESOS, ROTONDA Y PASO A DESNIVEL, REGION

CALLAO_ACTUALIZACIÓN

EDI CONSTRUCCION DEL PUENTE SANTA ROSA, ACCESOS, ROTONDA Y PASO A DESNIVEL, REGION Subpresupuesto 001

CALLAO_ACTUALIZACIÓN

PROVIAS Cliente CALLAO - CALLAO Lugar

Item	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
806.E2	TERMINAL DE BARRERA DE SEGURIDAD H2W3A EN ABATIMIENTO ESVIADO CORTO (L=8.33m.)	u	2.00	3,006.98	6,013.96
806.E3	CONEXION DE BARRERA SIMPLE H2W3A A TERMINAL P4 DE APROXIMACION (A) (L=10m.)	u	8.00	3,143.30	25,146.40
806.E4	CONEXION DE BARRERA SIMPLE H2W3A A ATENUADOR DE IMPACTOS CLASE 80 P/V (L=9m.)	u	6.00	2,858.00	17,148.00
306.E5	CONEXIÓN DE BARRERA SIMPLE H2W3A A TERMINAL P4 DE SALIDA (D) (L=10.00m.)	u	2.00	3,143.30	6,286.60
306.F	BARRERAS DE SEGURIDAD VIAL METÁLICA H2W3B - DOBLE	m	1,119.00	390.88	437,394.72
308.B	BARRERAS DE SEGURIDAD DE CONCRETO SOBRE PUENTE	m	136.00	543.06	73,856.16
811.A	ATENUADOR DE IMPACTO REDIRECTIVO 80 PARALELO	u	2.00	32,883.57	65,767.14
311.B	ATENUADOR DE IMPACTO REDIRECTIVO 80 TRIANGULAR	u	1.00	26,235.07	26,235.07
690.A	BARANDAS METÁLICAS	m	1,783.00	314.84	561,359.72
3	PROTECCIÓN AMBIENTAL				261,109.42
900	PROGRAMA DE CIERRE DE OBRA				52,005.66
06.E	READECUACION AMBIENTAL EN AREAS COLINDANTES	m2	16,027.83	0.47	7,533.08
06.E1	READECUACION AMBIENTAL DE CAMPAMENTO Y PATIO DE MAQUINAS	m2	1,551.73	28.66	44,472.58
000	PROGRAMA DE MONITOREO AMBIENTAL				191,137.50
909.A	MONITOREO DE LA CALIDAD DEL AGUA	pto	27.00	1,724.50	46,561.50
910.A	MONITOREO DE LA CALIDAD DEL AIRE	pto	36.00	1,880.00	67,680.00
911.A	MONITOREO DE RUIDO	pto	36.00	100.00	3,600.00
912.A	MONITOREO DE LA CALIDAD DEL SUELO	pto	9.00	540.00	4,860.00
913.A	MONITOREO DE VIBRACIONES	pto	27.00	340.00	9,180.00
914.A	MONITOREO DE SEDIMENTOS	pto	27.00	158.00	4,266.00
15.A	MONITOREO DE FLORA Y FAUNA	pto	5.00	10,998.00	54,990 <u>.08</u>
000	SUBPROGRAMA DE SEÑALIZACION Y SEGURIDAD VIAL				17,966.26
16.A	SEÑAL INFORMATIVA AMBIENTAL PERMANENTE	m2	16.80	1,069.42	17,966.26
	COSTO DIRECTO				215,143,873,38
	GASTOS GENERALES 14.99%				32,257,481.55
	UTILIDAD 10%				21,514,387.34
	SUB TOTAL S/.				268,915,742.27
	IGV (18%)				48,404,833.61
	TOTAL PRESUPUESTO				317,320,575.88

SON: TRESCIENTOS DIECISIETE MILLONES TRESCIENTOS VEINTE MIL QUINIENTOS SETENTA Y CINCO Y 88/100 NUEVOS SOLES

ESPECIALISTA EVALUACIÓN ECONÓMICA Reg. CEP N° 03476

JEFE DE ESTUDIO

NICOLAS VIKLASECA CARRASCO Reg. CIP Nº 29943

HOWYKYCZZ ECO. ISABEK HERNÁMDEZ COTRINA PECIALISTA EVALVÁCIÓN ECONÓM

10.3 Anexo 03: Presupuesto de Interferencias

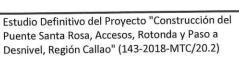
PRESUPUESTO DE REUBICACIÓN

El presupuesto total de reubicación de Interferencias asciende a dos millones ochenta y siete mil novecientos noventa con ochenta y seis 2 087 990.86 S/.

Este presupuesto se ha realizado en base a la información proporcionada por las entidades involucradas y se encuentra actualizada al mes de **noviembre del 2019**.

Tabla: Presupuesto de Total de Reubicación de Interferencias

PRESUPUESTO TOTAL DE REUBICACIÓN DE INTERFERENCIAS		
DESCRIPCIÓN	TOTAL (S/.)	
Retiro de Estructuras y Redes Eléctricas - ENEL	1 706 616.04	
Reubicación de Interferencias - MUNICIPALIDAD DEL CALLAO*	2 102.76	
Reubicación de Interferencias - TELEFÓNICA	52 544.75	
Reubicación de Interferencias - ENTEL	2 369.61	
Reubicación de Interferencias - CLARO	89 383.37	
Reubicación de Interferencias - ENTEL	27 931.91	
Reubicación de Interferencias – AZTECA*	207 042.42	
COSTO TOTAL (Incluye IGV)	2 087 990.86	


^{*}Elaboración Propia

ESPECIALISTA EVALVACIÓN ECONÓMICA PER CEDISTA EVALVACIÓN ECONÓMICA PER CEDIS O 03476

NICOLAS VILLASEO Reg. CIPA

6 REUBICACIÓN DE INTERFERENCIAS - OBRAS CIVILES

Para dicha reubicación se ha tenido en cuenta el espacio disponible en el área de influencia del proyecto, buscando no dejar sin abastecimiento de gas natural, a la población durante los trabajos de construcción del presente proyecto.

7 PRESUPUESTO DE REUBICACIÓN

El presupuesto de reubicación de la red de abastecimiento de Gas Natural gestionada por la empresa Cálidda asciende a un millón ciento treinta y dos mil novecientos cuarenta y ocho soles con diez (1 132 948.10 S/.)

Este presupuesto ha sido realizado en base a la información brindada por Cálidda - Gas Natural de Lima y Callao S.A.

Tabla 1: Presupuesto de reubicación de la red de gas

PRESUPUESTO DE REUBICACION DE LÍNEAS DE GAS NATURA	L AFECTAL	OAS - CÁLIDO	Α			
Descripción	Unidad	Cantidad	Precio (S/.)	Total (S/.)		
1.0 Dirección del Proyecto	Glb	1.00	15 530.72	15 530.72		
2.0 Gestión de Procura	Glb	1.00	3 196.78	3 196.78		
3.0 Gestión de Estudios y Requerimientos legales para la construcción	Glb	1.00	13 520.85	13 520.85		
4.0 Gestión de Ingeniería	Glb	1.00	35 028.00	35 028.00		
5.0 Gestión Social y Comunitario	Glb	1.00	9 013.90	9 013.90		
6.0 Gestión de Construcción	Glb	1.00	541 219.97	541 219.97		
6.1 Materiales PE				31 967.80		
6.1.2 Av. Santa Rosa / Av. Morales Duarez	Glb	1.00	31 967.80	31 967.80		
6.2 Interferencias - Construcción				509 252.17		
6.2.1 Redes (Av. Santa Rosa / Av. Morales Duarez)	Glb	1.00	450 695.03	450 695.03		
6.2.2 Tuberías de conexión (Av. Santa Rosa / Av. Morales Duarez)	Glb	1.00	58 557.14	58 557.14		
7.0 Gestión de Interventoría				109 857.59		
7.1 Supervisión de Construcción	Glb	1.00	30 485.88	30 485.88		
7.2 Supervisión de HSE	Glb	1.00	26 947.70	26 947,70		
7.3 Supervisión, Plan de Prevención de Daños	Glb	1.00	52 424.01	52 424.01		
COSTO DIRECTO			11	727 367.81		
GASTOS GENERALES (15%)						
UTILIDAD (10%)						
COSTO DE EXPEDIENTE TÉCNICO (7%)				50 915.75		
SUB TOTAL				960 125,51		
IGV (18%)				172 822.59		

TOTAL

rudio

1 132 948.10

EVALUACIÓN AMBIENTAL PRELIMINAR DEL ESTUDIO DEFINITIVO PARA LA CONSTRUCCIÓN DEL PUENTE SANTA ROSA, ACCESOS, ROTONDA Y PASO A DESNIVEL, REGIÓN CALLAO

PROGRAMA	PROYECTO	SUB TOTAL
I. Transferencia interestatal	Transferencia interestatal de predios inscritos	12,535.00
I. Adquisición de Áreas afectadas	2. Trato directo o expropiación	1,883,759.92
III. Inscripción y Registro	3. Inscripción y registro	6,914.00
V. Compensación de afectaciones precarias	4. Compensación de afectaciones precarias	170,587.23
V. Implementación del PAC	5. Seguimiento y monitoreo	138,720.00

VECO. ISABÉK HERNÁNDEZ COTRINA ESPECIALISTA EVALVÁCIÓN ECONÓMICA Reg. CEP N° 03476

NICOLAS VIETASEGACARRASCO Reg. CH Nº 29943

JEFE DE ESTUDIO

ROSMERY GABAY FLC ESPECIALISTA DE AFECTACION Reg. CIP N.719885

B
V

PRESUPUESTO GESTION DE AUTORIZACIÓN PLAN DE MONITOREO ARQUEOLOGICO DE INFRAESTRUCTURA DE CALLAO

Lugar:	CALLAO	000		Monto (S/)	
PLAZO DE INTERVENCION:	9.00	COCOL		() () () () () ()	
PRESUPUESTO					
Nombre	r/mes	Recurso	Und.	Monto (S/.)	Total (S/.)
PERSONAL:				00000	00 000
Araneálago Director/Consultor	1.00		mes	00.000,6	30,000.00
Argueologo Residente	1.00	00.9	mes	4,500.00	27,000.00
SUBTOTAL REMUNERACIONES (S/.)					00.000,76
DAGOS AL MINISTERIO DE CULTURA					
	1.00	1.00	mes	1,932.60	1,932.60
Autorizacioni para rima				1,071.20	1,071.20
Entrega de miorne Filial					3,003.80
SUBLICIAL PAGOS (St.)		•			
MATERIALES:					
Materiales de uso general					
Entonomiae	1.00	0.50	milllar	500.00	
T OLOCOPIRAS Impresiones	1.00	0.25	mes	500.00	125.00
I/Hilos de Oficina (Panel Bond Taniceros, folders, etc)	1.00	0.25	mes	500.00	125.00
51	1.00	0.25	Und.	500.00	125.00
Impresora color Formato A4 (alquiler)	1.00	0.25	Und.	200.00	40.00
Indumentaria de campo					
Linedo de Chaleco v gorra para personal	3.00	1.00	Und.	45.00	
Material de registro arqueológico (camara, gps, brujula etc)	2.00	1.00	mes	500.00	1,000.00
Movilidad (incline chofer v combustible)	1.00	1.00	mes	1,000.00	1,000.00
SUB TOTAL MATERIALES (S/.)					2,800.00
				-	00 000 00
(/S) IVIOL					62,803.80
IMPLESTOS		18%			11,304.68
IIII IDAD		%8			5,024.30
TOTAL (S/)					79,132.79
1012E (3:)					

LIC. ADA MEDING MENDOZA COLOR ESPECIALISTA DE ARDIEOLOGIA COTRINA
Reg. ERORISTA DE ARDIEOLOGIA ECONÓMICA
ESPECIALISTA EVALUACIÓN ECONÓMICA
Reg. CEP N° 03476

10. PEFETERETERION DI

JEFE DE ESTUDIO

Vº Bº LES

Lugar

Página

Costo al

00083

31/07/2020

Presupuesto

PRESUPUESTO DE MANTENIMIENTO O CONSERVACION VIAL - EDI CONSTRUCCION DEL PUENTE SANTA ROSA,

Presupuesto

1202001

ACCESOS, ROTONDA Y PASO A DESNIVEL

Subpresupuesto 002
Cliente PRO

002 PRESUPUESTO DE MANTENIMIENTO PERIODICO PROVIAS NACIONAL

LIMA - LIMA - LIMA

Item	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
100	TRABAJOS PRELIMINARES				23,418.71
101.A	MOVILIZACION Y DESMOVILIZACION DE EQUIPO	glb	1.00	7,500.00	7,500.00
102.A	TOPOGRAFÍA Y GEOREFERENCIACIÓN	glb	1.00	918.71	918.71
103.A	MANTENIMIENTO DE TRÁNSITO TEMPORAL Y SEGURIDAD VIAL	glb	1.00	15,000.00	15,000.00
200	ACCESOS				518,687.65
50.A	RESELLADO DE JUNTAS Y SELLADO DE GRIETAS EN CALZADA Y BERMA	m	2,560.00	33.96	86,937.60
60.A	REPARACION DE LOSA DE CALZADA Y BERMA EN ESPESOR TOTAL	m2	2,515.00	95.72	240,735.80
341.A	REPARACIÓN MAYOR DE CUNETAS	m	158.00	84.77	13,393.66
643.A	REPARACION MAYOR DE ALCANTARILLAS DE CONCRETO	m3	3.92	962.55	3,773.20
661.A	RECUPERACION, REEMPLAZO Y COLOCACION DE SUBDRENES	m	185.10	68.42	12,664.54
682.A	REPARACION DE MUROS DE CONCRETO REFORZADO	m3	37.61	1,672.51	62,903.10
86.A	CONSERVACION DE DEFENSAS RIBEREÑAS	m	281.00	349.75	98,279.75
300	SEÑALIZACIÓN				224,684.17
01.B	REPOSICION O COLOCACION DE SEÑALES VERTICALES	u	32.00	304.16	9,733.12
03.B	CONSERVACION DE BARRERAS DE SEGURIDAD (REPOSICION)	m	619.20	330.31	204,527.95
07.A	CONSERVACION DE MARCAS EN EL PAVIMENTO	m2	609.65	10.43	6,358.65
24.A	CONSERVACION DE TACHAS RETROREFLECTIVAS	u	241.50	16.83	4,064.45
.00	PUENTE SANTA ROSA				76,475.15
115.A	LIMPIEZA DE SUPERFICIE DE PUENTES DE CONCRETO	m2	2,942.51	10.59	31,161.18
121.A	REEMPLAZO DE JUNTAS DE DILATACION	u	0.20	94,505.64	18,901.13
123.A	REPARACION DE CONCRETO CON CORROSION EN ACERO DE REFUERZO	m3	29.43	897.48	26,412.84
00	ROTONDA SANTA ROSA				59,578.76
115.A	LIMPIEZA DE SUPERFICIE DE PUENTE DE CONCRETO	m2	874.96	10.59	9,265.83
121.A	REEMPLAZO DE JUNTAS DE DILATACION	u	0.20	94,505.64	18,901.13
123.A	REPARACION DE CONCRETO CON CORROSION EN ACERO DE REFUERZO	m3	35.00	897.48	31,411.80
00	VARIOS				83,098.16
53.A	CONSERVACION DE ACERAS DE CONCRETO	m2	1,735.00	33.67	58,417.45
125.A	REPARACION DE ESTRUCTURA METALICA	t	8.74	7,500.00 918.71 15,000.00 33.96 95.72 84.77 962.55 68.42 1,672.51 349.75 304.16 330.31 10.43 16.83 10.59 94,505.64 897.48	24,680.71
	COSTO DIRECTO				985,942.60
	GASTOS GENERALES 35%				345,079.9
	UTILIDAD 10%				98,594.26
	SUB TOTAL S/.				1,429,616.77
	IGV (18%)				257,331.02
	TOTAL PRESUPUESTO				1,686,947.79

SON: UN MILLON SEISCIENTOS OCHENTA Y SEIS MIL NOVECIENTOS CUARENTA Y SIETE Y 79/100 NUEVOS SOLES

ESPECIALISTA EVALVACIÓN ECONÓMICA Reg. CEP N° 03476

EFE DE ESTUDIO

NICOLAS VIKLASECA CARRASCO Reg. CIP Nº 29943 Lugar

Página

00084

31/07/2020

Presupuesto

Presupuesto

1202001

UTILIDAD 10%

SUB TOTAL S/.

TOTAL PRESUPUESTO

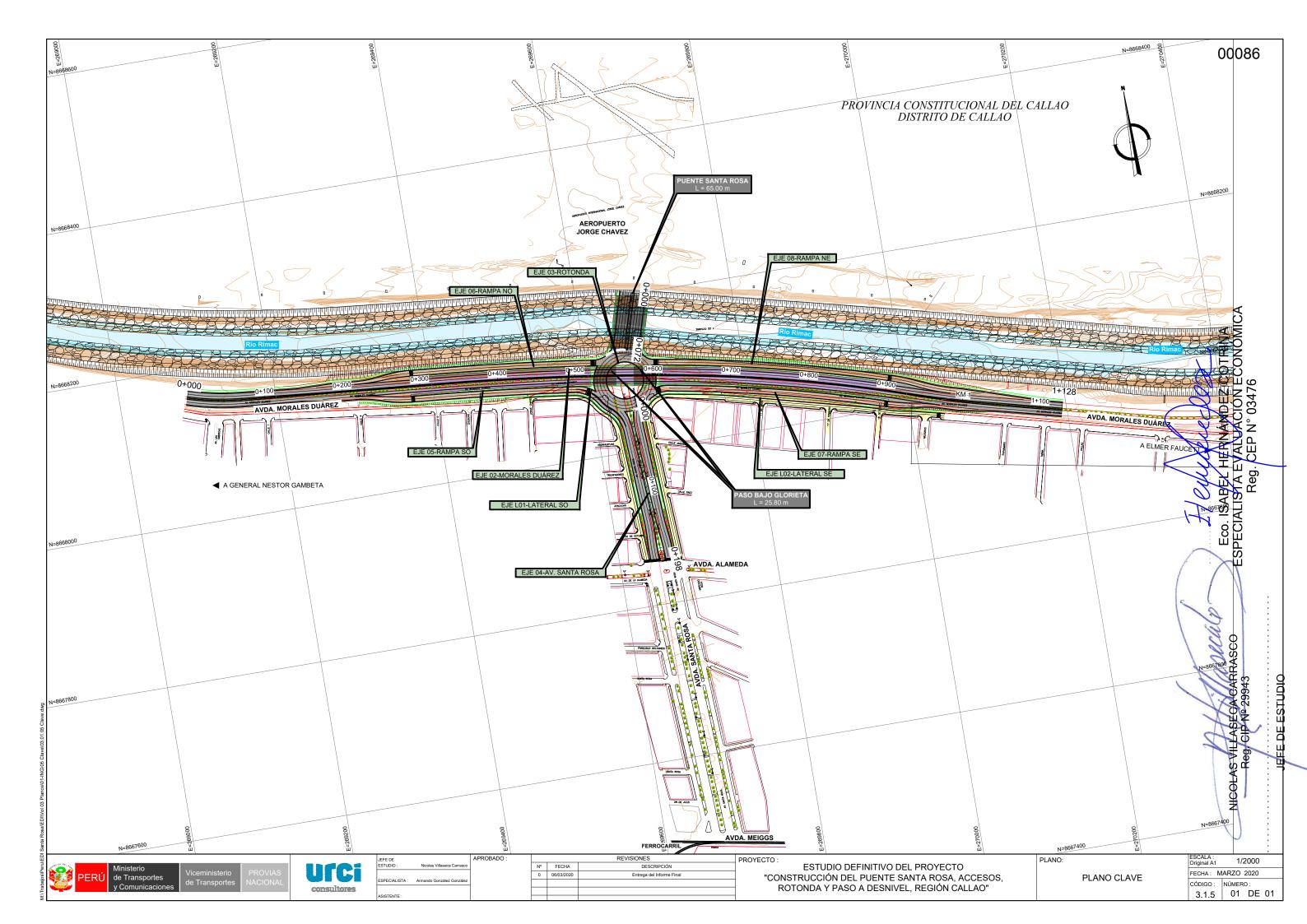
IGV (18%)

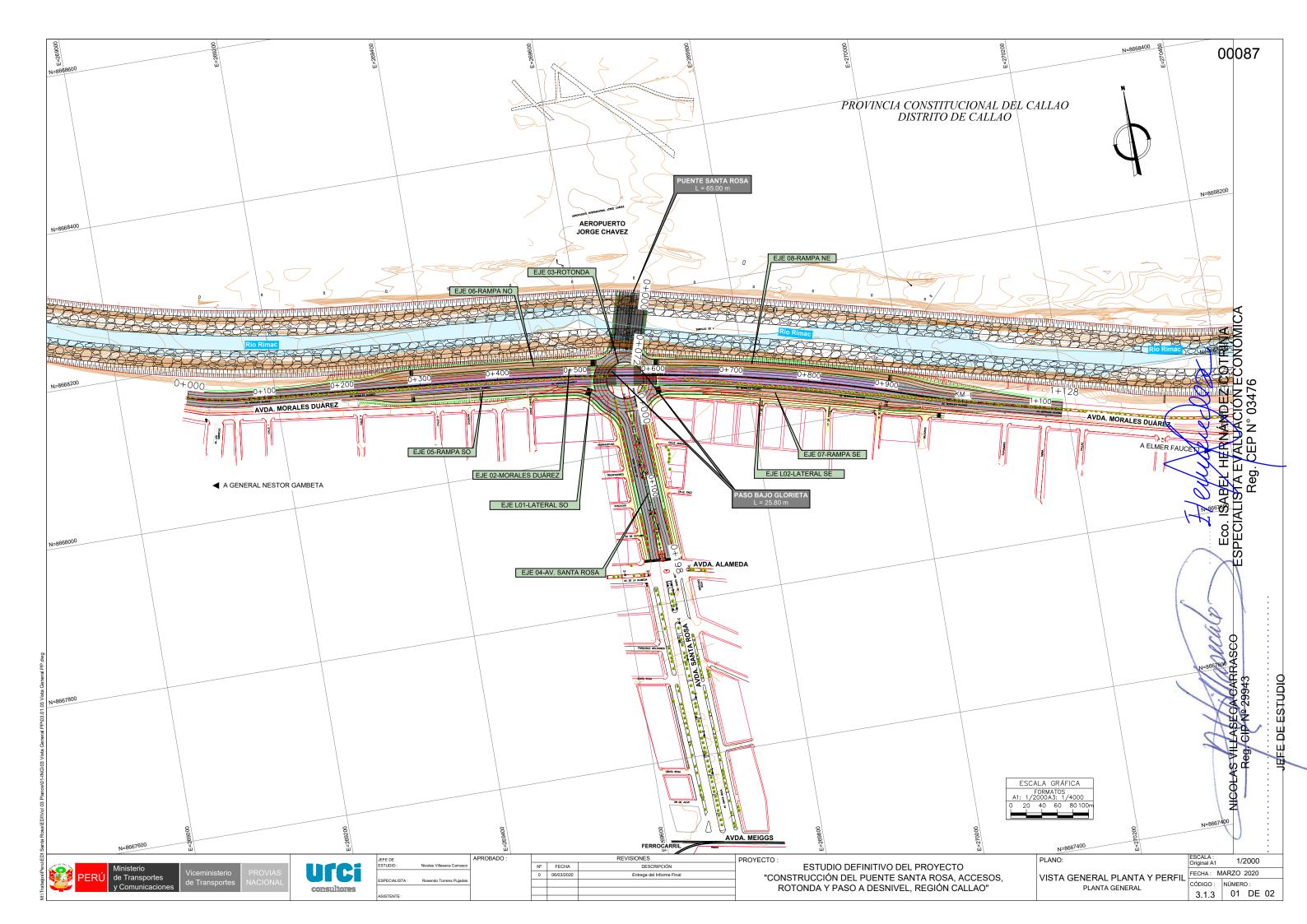
PRESUPUESTO DE MANTENIMIENTO O CONSERVACION VIAL - EDI CONSTRUCCION DEL PUENTE SANTA ROSA,

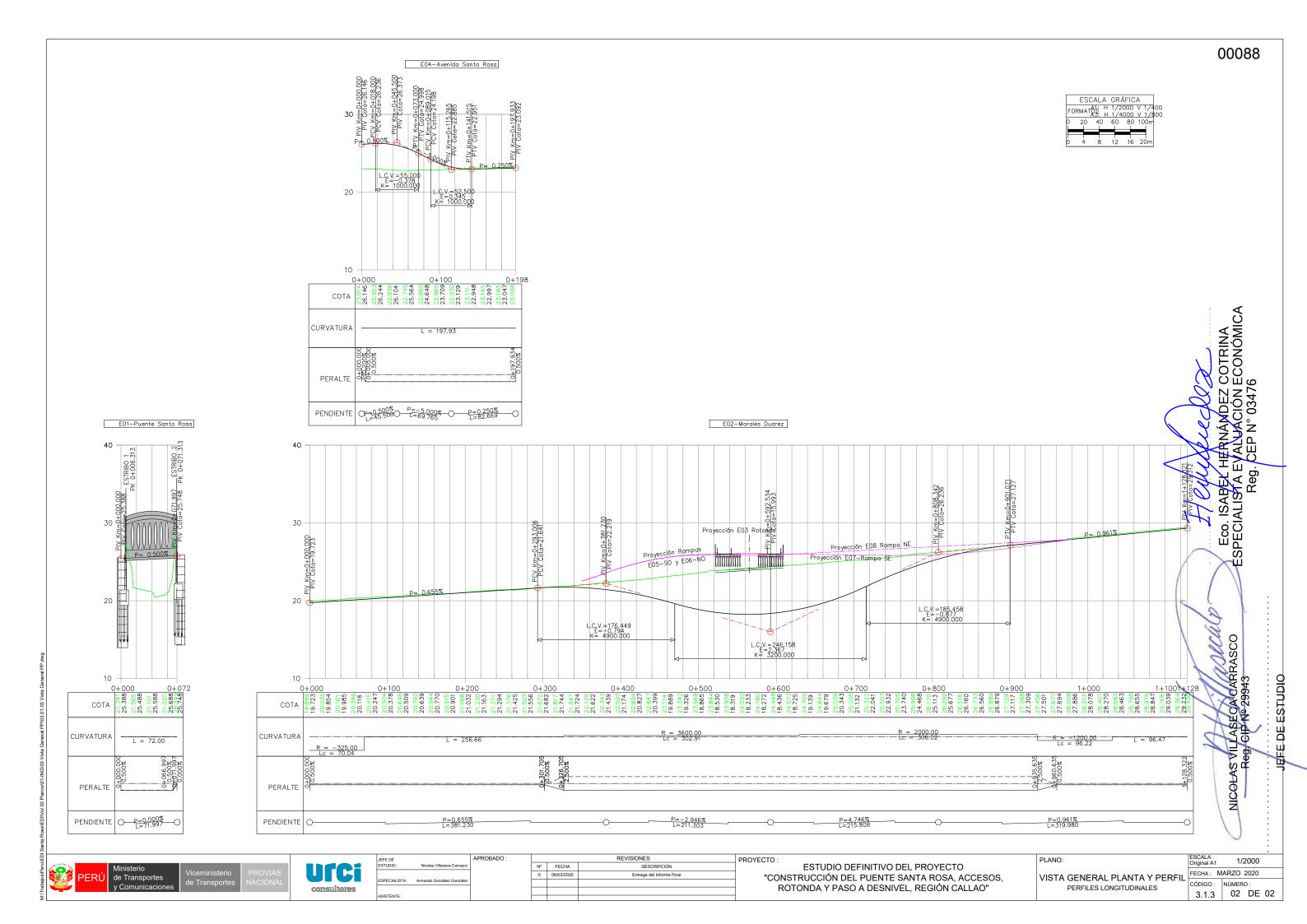
ACCESOS, ROTONDA Y PASO A DESNIVEL

Subpresupuesto 001 Cliente

PRESUPUESTO DE MANTENIMIENTO RUTINARIO PROVIAS NACIONAL Costo al LIMA - LIMA - LIMA


Item	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
100	TRABAJOS PRELIMINARES				15,918.71
101.A	MOVILIZACION Y DESMOVILIZACION	glb	1.00	5,000.00	5,000.00
102.A	TOPOGRAFÍA Y GEOREFERENCIACIÓN	glb	1.00	918.71	918.71
103.A	MANTENIMIENTO DE TRÁNSITO TEMPORAL Y SEGURIDAD VIAL	glb	1.00	10,000.00	10,000.00
200	ACCESOS				89,052.98
501.A	SELLADO DE FISURAS Y GRIETAS EN CALZADA Y BERMA	m	555.64	28.53	15,852.41
510.A	REPARACION DE LOSAS DE CALZADA Y/O BERMA EN ESPESOR PARCIAL	m2	560.00	101.21	56,677.60
601.A	LIMPIEZA DE CUNETAS	m	316.00	3.04	960.64
604.A	REPARACIÓN MENOR DE CUNETAS REVESTIDAS	m	158.00	14.71	2,324.18
616.A	LIMPIEZA DE ALCANTARILLAS	m	19.60	12.25	240.10
617.A	REPARACIÓN MENOR DE ALCANTARILLAS DE CONCRETO	m	9.80	6.31	61.84
681.A	LIMPIEZA DE MUROS	m2	1,504.21	8.60	12,936.21
300	SEÑALIZACIÓN				26,468.75
801.A	CONSERVACION DE SEÑALES VERTICALES	u	21.00	67.13	1,409.73
803.A	CONSERVACION DE BARRERAS DE SEGURIDAD (LIMPIEZA})	m	619.20	40.47	25,059.02
400	PUENTE SANTA ROSA				59,165.29
1101.A	LIMPIEZA DE CAUCES	m3	1,950.00	5.68	11,076.00
1102.A	LIMPIEZA DE PUENTES	glb	1.00	15,109.75	15,109.75
1106.A	REPARACION SUPERFICIAL DE ELEMENTO DE CONCRETO	m2	588.50	56.04	32,979.54
500	ROTONDA SANTA ROSA				9,806.44
1106.A	REPARACION SUPERFICIAL DE ELEMENTO DE CONCRETO	m2	174.99	56.04	9,806.44
	COSTO DIRECTO				200,412.17
	GASTOS GENERALES 35%				70,144.26


SON: TRESCIENTOS CUARENTA Y DOS MIL NOVECIENTOS CINCO Y 23/100 NUEVOS SOLES


20,041.22

52,307.58

