

DISEÑO DE ALCANTARILLA MCA 4x3 (Hr=6.83)

1. DATOS DE DISEÑO

MATERIALES:

Resistencia del Concreto (f'c):	28 Mpa
Esfuerzo de fluencia (fy):	4200 kg/cm2
Peso unitario del concreto:	24 kn/m3
Peso específico del relleno:	18 kn/m3
Angulo de fricción interna del relleno (φ):	30
Peso específico del agua:	10 kn/m3
Peso específico del asfalto:	22.5 kn/m3
Esfuerzo admisible del terreno:	1.79 Kg/cm2

1. CARACTERISTICAS GEOMÉTRICAS DE LA SECCIÓN

Altura de relleno (hr):	6.83 m
Espesor de la losa (el):	0.3 m
Altura interna (hi):	3.00 m
Espesor del muro (em):	0.3 m
Altura de cimentación (hc):	0.3 m
Altura entre ejes de losa (he):	3.3 m
Altura de alcantarilla del eje de losa inferior al nivel de relleno (ht	10.28 m
Altura de agua (ha):	2.25 m
Ancho interior (ai):	4.00 m
Ancho entre ejes de muros (ae):	4.3 m
Espesor del pavimento (ep):	0.075 m

2. CONSIDERACIONES DE DISEÑO * ESTADOS LÍMITES

Diseño por factores de carga y resistencia, AASHTO LRFD 1.3.2.1-1

$$\sum \eta_i \gamma_i Q_i \leq \phi R_n = R_r$$

$\eta_i = r$	เกทะท	, ≥0,95

Factor modificador	Servicio	Resistencia	Fatiga
Ductilidad n _D	1	0.95	1
Redundancia n _R	1	1	1
Importancia operativa (Puentes poca importancia) n _i	1	1	1
Importancia operativa (Puentes importantes) n ₁	1	1.05	1

• Factor de resistencia, AASHTO LRFD 5.5.4.2.1

Factor de resistencia	ф
Flexión y tracción del concreto armado	0.9
Flexión y tracción del concreto pretensado	1.00
Corte y torsión Concreto de densidad normal	0.90
Concreto de baja densidad	0.70

• Factores de carga para la solicitación mayorada AASHTO LRFD Tabla 3.4.1-1 y Tabla 3.4.1-2

COMBINACIONES Y FACTORES DE CARGA			
Combinación	Servicio	Resistencia I(máx)	Resistencia I (mín)
DC: Peso propio permanente	1.00	1.25	0.90
DW: Superficie de rodadura	1.00	1.50	0.65
EV: Carga de tierra vertical	1.00	1.30	0.90
WA: Carga hidrostática	1.00	1.00	1.00
EH: Empuje lateral de suelo	1.00	1.35	0.90
ES: Empuje por sobrecarga de suelo	1.00	1.50	0.75
LS: Empuje por sobrecarga vehicular	1.00	1.75	0.00
LL+IM: Sobrecarga vehicular	1.00	1.75	0.00

3. CARGAS SOBRE LA ALCANTARILLA (En un metro de ancho)

3.1. Presión vertical, Carga de suelo total no mayorada

Para instalaciones bajo terraplén, AASHTO LRFD 12.11.2.2.1-1 y 12.11.2.2.1-2

$$W_E = g F_e \gamma$$
, $B_c H \times 10^{-9}$

donde

$$F_e = 1 + 0.20 \frac{H}{B}$$

 $Fe \le 1.15$, para instalaciones con relleno compactado a lo largo de los laterales de la sección tipo cajón. $Fe \le 1.40$, para instalaciones con relleno no compactado a lo largo de los laterales de la sección tipo cajón.

Fe: 1.15

Presión vertical en la parte superior de la alcantarilla:

EV= 141.38 Kn/m2

3.2. Presión horizontal del terreno (EH = p), AASHTO LRFD 3.11.5.1-1 y 3.11.5.2-1

$$p = k \gamma_s g z \left(\times 10^{-9} \right)$$
$$k_o = 1 - \sin \phi_f'$$

Presión lateral del terreno en la parte sup: 62.82 Kn/m2
Presión lateral del terreno en la parte inf: 92.52 Kn/m2

0.50

3.3. de Agua (WA):

Cuando la alcantarilla esta colmada , la presión de agua es cero.

Cuando existe agua a un nivel determinado en el interior de la alcantarilla, la presión latreral es:

3.4. Sobrecarga vehicular (LL+IM):

• El factor de carga dinámica (IM) para el caso de elementos enterrados, AASHTO LRFD 3.6.2.2

$$IM = 33 (1.0 - 4.1 \times 10^{-4} D_E) \ge 0\%$$

IM= -59.41 %

- ullet El area de contacto de los neumaticos de una rueda compuesta por uno o dos neumáticos se debera considerar como un unico rectangulo de 510 mm de ancho y 250 mm de longitud
- Distribución de las cargas de rueda a través de suelos de relleno, AASHTO LRFD 3.6.1.2.6 Area de contacto en dirección longitudinal y transversal para una linea de ruedas para alturas de relleno mayores a 0.60m

a=0.25+1.15*hr= **8.10 m** b=0.51+1.15*hr= **8.36 m**

3.4.1. Sobrecarga vehicular debido al camión de diseño

* Carga distribuida, para un solo carril

Area de contacto para el area mas cargada.

A=0.25+1.15*hr: **8.10 m** B=2.31+1.15*hr: **10.15 m**

Tener en cuenta la altura de relleno no mayor que 2.40, caso contrario no se considerara sobrecarga vehicular (AASHTO LRFD 3.6.1.2.6)

Con el factor de presencia multiple se tiene:

m= 1.20 SC=145*m*IM/(A*B): **0.00 kn/m2**

* Carga distribuida, para dos carriles

A=0.25+1.15*hr: 8.10 m B=5.31+1.15*hr: 13.16 m

Con el factor de presencia multiple se tiene:

m= 1.00 SC=2*145*m*IM/(A*B): **0.00 kn/m2**

3.4.2. Sobrecarga vehicular debido al tandem de diseño

3.4.2.1. Para un solo carril

 $\begin{array}{lll} m = & 1.20 \\ A = 1.45 + 1.15 * hr: & 9.30 \ m \\ B = 2.31 + 1.15 * hr: & 10.16 \ m \\ SC = 2*110 * m*IM/(A*B): & \textbf{0.00 kn/m2} \end{array}$

3.4.2.2. Para dos carriles

 $\begin{array}{ccc} m = & 1.00 \\ A = 1.45 + 1.15 * hr: & 9.30 \ m \\ B = 5.31 + 1.15 * hr: & 13.16 \ m \\ SC = 2*110 * m*IM/(A*B): & \textbf{0.00 kn/m2} \end{array}$

3.5. Superficie de rodadura (DW)

Asfalto: 1.688 Kn/m

3.6. Empuje Equivalente de Suelo por Sobrecarga Vehicular (LS):

Empuje Equivalente de Suelo, Distribución rectangular:

LS=Ko*Ys*heq:

ht: 10.28 heq: 0.172 LS: 1.548 Kn/m

4.0 RIGIDEZ VERTICAL DEL RESORTE

 Esfuerzo Admisible del Terrero:
 1.79 Kg/cm2

 Kb:
 36220 Kn/m3

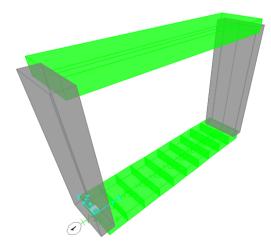
 Nseg:
 10

 Lseg:
 0.43 m

 A:
 1 m

 Kri:
 15574.6 Kn/m

 Kre:
 7787.3 Kn/m


5.0 ÁNALISIS ESTRUCTURAL DE ALCANTARILLA

Combinaciones de Carga:

E1: 1.25DC+1.50DW+1.30EV+0.90EH+1.00WA+1.75LL+1.75LS

E2: 1.25DC+1.50DW+1.30EV+1.35EH+1.75LL+1.75LS

E3: 0.9DC+0.65DW+0.90EV+1.35EH+1.75LL+IM+1.75LS

Modelo en el SAP 2000

6.0. DISEÑO POR FLEXIÓN

Se realizó un modelo matemático en el SAP 2000 para la representación de la alcantarilla sometida a los esfuerzos actuantes para un metro lineal. En el siguiente gráfico se puede visulaizar el momento flector.

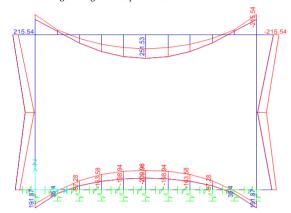


Diagrama de Momento Flector

Mu(+) Losa superior=	251.53 Kn-m
Mu(-) Losa superior=	215.54 Kn-m
Mu(+) Pared Lateral=	215.54 Kn-m
Mu(-) Pared Lateral=	0.00 Kn-m
Mu(+) Losa inferior=	191.87 Kn-m
Mu(-) Losa inferior=	209 96 Kn-m

6.1. Cálculo del Refuerzo en la losa:

6.1.1. Cálculo del Refuerzo positivo- cara superior:

Momento Mínimo: a) 1.2M_{cr}=1.2f_r*S

a) 1.2141 _{cr} -1.21 _r 3		
fr=0.97raiz(f'c):	5.13 Mpa	
S=bh ² /6:	0.02 m3	
1.2Mcr:	92.39 Kn-m	
b)4/3*Mu		
Mu:	251.53 Kn-m	
4/3*Mu:	335.36 Kn-m	
M mínimo:	92.39 Kn-m	
Cálculo del refuerzo:		
M _{u diseño} =	251.53 Kn-m	Máx. (Mu, Mmínimo)
M _{u diseño} =	25.15 T-m	
F'c:	280 Kg/cm2	
F _v :	4200 Kg/cm2	
Usando:		
φ	1"	
Diámetro:	2.54 cm	
Area:	5.07 cm2	
r:	3 cm	
e _{losa:}	0.30 m	
z:	4.27 cm	
d=	25.73 cm	
As:	Mu/0.9fy(d-a/2)	
a:	0.18 As	
a:	5.06 cm	

As:

6.1.2. Cálculo de Armadura de Distribución: LRFD 9.7.3.2 (La armadura de distribución paralela al tráfico)

	A2: 1/2"@0.15m	As Colocado:	8.47 cm2	
Área:	1.27 cm2			
Diámetro:	1.27 cm			
φ	1/2"			
As repartición:	7.65 cm2			
% Repartición:	26.69			
1750/raiz(S)<50%:	26.69	<	50 %	
.2 (La ai madui a de distribut	cion paraicia ai trancoj			

28.68 cm2 A1: 1"@0.15m

As Colocado: 33.80 cm2

ок !!!

ок !!!

6.1.3. Cálculo del Refuerzo negativo- cara inferior:

Momento Mínimo:

a) 1.2M _{cr} =1.2f _r *S	
fr=0.97raiz(f'c):	5.13 Mpa
1.2Mcr:	92.39 Kn-m
b)4/3*Mu	
b)4/3*Mu	

Mu: 215.54 Kn-m 4/3*Mu: 287.38 Kn-m M mínimo: 92.39 Kn-m

Cálculo del refuerzo:

 $\begin{array}{lll} M_{u \text{ diseño}} = & 215.54 \text{ Kn-m} & \text{Máx. (Mu, Mmínimo)} \\ M_{u \text{ diseño}} = & 21.55 \text{ T-m} \\ F'_c : & 280 \text{ Kg/cm2} \\ F_y : & 4200 \text{ Kg/cm2} \\ \text{Usando:} \end{array}$

1" φ . Diámetro: 2.54 cm 5.07 cm2Área: 3.00 cm r: 0.30 m e_{losa}: 4.27 cm 25.73 cm As: Mu/0.9fy(d-a/2) 0.18 As a: 4.26 cm a: 24.16 cm2 As:

A3: 1"@0.2m As Colocado: 25.35 cm2 OK!!!

6.1.5. Cálculo del Acero de Temperatura:

4600 mm h= 300 mm 0.25 mm2/mm As: 0.233 ≤As≤ 1.27 As: 2.33 cm2/m φ 1/2" 1.27 cm Diámetro: 1.27 cm2 Área:

A4: 1/2"@ 0.25m As Colocado: 5.08 cm2 OK !!!

6.2. Cálculo de Refuerzo en Paredes Laterales

6.2.1. Cálculo del Refuerzo Positivo-Cara Interior:

Momento Mínimo: a) 1.2M_{cr}=1.2f_r*S

fr=0.97raiz(fc): 5.13 Mpa S=bh²/6: 0.02 m3 1.2Mcr: 92.39 Kn-m b)4/3*Mu

 Mu:
 215.54 Kn-m

 4/3*Mu:
 287.38 Kn-m

 M mínimo:
 92.39 Kn-m

Cálculo del refuerzo:

 $\begin{array}{lll} \mbox{M}_{u \; diseño} = & 215.54 \; \mbox{Kn-m} \\ \mbox{M}_{u \; diseño} = & 21.55 \; \mbox{T-m} \\ \mbox{F}'_c : & 280 \; \mbox{Kg/cm2} \\ \mbox{F}_y : & 4200 \; \mbox{Kg/cm2} \end{array}$

Usando:

φ Diámetro: 2.54 cm 5.07 cm2 Área: 3.00 cm r: 0.30 m e_{pared} z: 4.27 cm d= 25.73 cm Mu/0.9fy(d-a/2) As: a: 0.18 As 4.26 cm As: 24.16 cm2 L1: 1"@0.2m

As Colocado: 25.35 cm2 OK !!!

6.2.2. Cálculo del Refuerzo Negativo-Cara Exterior:

Momento Mínimo:

ок !!!

Cálculo del refuerzo:

0.00 Kn-m Máx. (Mu, Mmínimo) $M_{u\;dise\~no} =$ M_{u diseño}= 0.00 T-m 280 Kg/cm2 F'c: F_v: 4200 Kg/cm2 Usando: 1/2" φ Diámetro: 1.27 cm 1.27 cm2 Área: 3.00 cm r: 0.30 m e_{pared} : 3.64 cmd= 26.37 cm Mu/0.9fy(d-a/2) As: a: 0.18 As a: 0.00 cm0.00 cm2 As: L2: 1/2" @ 0.25m As Colocado: 5.08 cm2

6.2.3. Acero de Refuerzo Transversal:

3600 mm h= 300 mm b= As: 0.25 mm2/mm 1.27 0.233 ≤As≤ As: 2.33 cm2/m φ 3/8" Diámetro: 0.95 cm Área: 0.71 cm2

L3: 3/8" @ 0.25m As Colocado: 2.84 cm2 OK !!!

6.3. Cálculo de Refuerzo en Cimentación:

6.3.1. Refuerzo Negativo- Cara Superior

Momento Mínimo:

 $\begin{array}{lll} a) \ 1.2 M_{cr} = 1.2 f_r^* S \\ fr = 0.97 raiz (f^* c): & 5.13 \ Mpa \\ S = bh^2 / 6: & 0.02 \ m^3 \\ 1.2 Mcr: & 92.39 \ Kn-m \\ b) 4 / 3^* Mu & 209.96 \ Kn-m \\ Mu: & 279.94 \ Kn-m \\ M \ mínimo: & 92.39 \ Kn-m \end{array}$

Cálculo del refuerzo: $M_{u\, diseño} = \qquad \qquad 209.96 \; \text{Kn-m} \qquad \text{Máx. (Mu, Mmínimo)}$

 $\begin{array}{lll} M_{u \, diseño} = & 21.00 \, T\text{-m} \\ F'_{c} : & 280 \, \text{Kg/cm2} \\ F_{y} : & 4200 \, \text{Kg/cm2} \\ \text{Usando:} & & & \\ \phi & 1" \\ \text{Diámetro:} & 2.54 \, \text{cm} \end{array}$

5.07 cm2 Area: 3.00 cm r: 0.30 m e_{losa inferior}: 4.27 cm z: d= $25.73\;cm$ As: Mu/0.9fy(d-a/2)a: 0.18 As 4.14 cm As: 23.48 cm2

6.3.2. Refuerzo Positivo- Cara Inferior

Momento Mínimo:

ок !!!

Cálculo del refuerzo:

cuio uci i ciuci Lo.		
M _{u diseño} =	191.87 Kn-m	Máx. (Mu, Mmínimo)
M _{u diseño} =	19.19 T-m	
F'c:	280 Kg/cm2	
F _v :	4200 Kg/cm2	
Usando:		
φ	1"	
Diámetro:	2.54 cm	
Área:	5.07 cm2	
r:	3.00 cm	
e _{losa inferior} :	0.30 m	
Z:	4.27 cm	
d=	25.73 cm	
As:	Mu/0.9fy(d-a/2)	
a:	0.18 As	
a:	3.76 cm	
As:	21.28 cm2	
	B2: 1"@0.2m	As Colocado: 25.35 cm2

6.3.3. Acero de Refuerzo Transversal:

3600 mm h= 300 mm b= 0.25 mm2/mm As: 0.233 ≤As≤ 1.27 2.33 cm2/m As: φ 1/2" Diámetro: 1.27 cm Área: 1.27 cm2 s: 0.50 m

7. VERIFICACIÓN POR CORTANTE

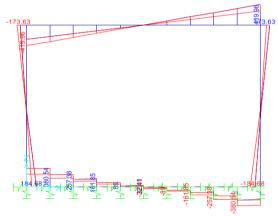


Diagrama de Fuerza Cortante

 Vu (Losa) en la cara:
 390.66 Kn

 Vu(pared lateral) en la cara:
 167.1 Kn

 Vu(cimentación) en la cara:
 380.54 Kn

7.1. Verificación por fuerza cortante en la losa superiorVu= 390.66 Kn

$$V_c = \left(0.178\sqrt{f_c} + 32\frac{A_s}{bd_e}\frac{V_u d_e}{M_u}\right)b\ d_e \eqno(5.14.5.3-1)$$

Para alcantarillas Tipo Cajón de una sola Celda:

 $\label{eq:vc} \mbox{Vc}{\ge}0.25\mbox{raiz}(\mbox{f'}c)\mbox{ bd}_{\mbox{e}} \qquad \qquad \mbox{AASHTO LRFD 5.14.5.3}$

En conclusión se tiene:

 $\label{eq:vc=0.178 * raiz(fc) b *d_e ≥ 0.25 fc*bd_e} Vc = 0.178 * raiz(fc) b *d_e ≥ 0.25 fc*bd_e$

de= 444.60 mm 45.73 b= 1000.00 mm F'_c: 28 Mpa Vc= 588150.52 N Vc= 588.15 Kn φVc: 529.34 Kn ≥

390.66 Kn

Losa pasa por cortante!

7.2. Verificación por Fuerza Cortante en las Paredes Laterales

AASHTO LRFD 5.8.3.3

Vu= 167.1 Kn

 $Vc=0.083\beta raiz(f'c)*b_v*d_v$

El dv es el mayor de 0.72h y 0.9de

0.72h: 216.00 mm 0.9de: 231.57 mm Donde dv: 231.57 mm b= 1000.00 mm F'c: 28 Mpa

Vc=0.083βraiz(f'c)*b_v*d_v

F'_c: 28 Mpa 203408.64 N Vc: 207.35 Kn

pVc: 186.61 Kn ≥ 167.10 Kn

 $\beta\,:\,2$

Pared lateral pasa por cortante!

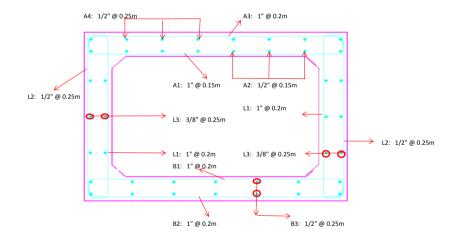
7.3. Verificación por Fuerza Cortante de losa de cimentación

Vu= 380.54 Kn

Para alcantarillas Tipo Cajón de una sola Celda:

Vc≥0.25raiz(f'c) bd_e AASHTO LRFD 5.14.5.3

En conclusión se tiene:


 $Vc=0.178 * raiz(f'c) b * d_e \ge 0.25 f'c*bd_e$

de= 444.60 mm 45.73 b= 1000.00 mm F'_c: 28 Mpa Vc= 588150.52 N Vc= 588.15 Kn

φVc: 529.34 Kn ≥ 380.54 Kn

Losa de cimentación pasa por cortante!

8. DISTRIBUCIÓN POR ARMADURA

